Display options
Share it on

Phys Rev Lett. 2013 Mar 01;110(9):093602. doi: 10.1103/PhysRevLett.110.093602. Epub 2013 Feb 25.

Interferometry with Bose-Einstein condensates in microgravity.

Physical review letters

H Müntinga, H Ahlers, M Krutzik, A Wenzlawski, S Arnold, D Becker, K Bongs, H Dittus, H Duncker, N Gaaloul, C Gherasim, E Giese, C Grzeschik, T W Hänsch, O Hellmig, W Herr, S Herrmann, E Kajari, S Kleinert, C Lämmerzahl, W Lewoczko-Adamczyk, J Malcolm, N Meyer, R Nolte, A Peters, M Popp, J Reichel, A Roura, J Rudolph, M Schiemangk, M Schneider, S T Seidel, K Sengstock, V Tamma, T Valenzuela, A Vogel, R Walser, T Wendrich, P Windpassinger, W Zeller, T van Zoest, W Ertmer, W P Schleich, E M Rasel

Affiliations

  1. ZARM, Universität Bremen, Am Fallturm, 28359 Bremen, Germany.

PMID: 23496709 DOI: 10.1103/PhysRevLett.110.093602

Abstract

Atom interferometers covering macroscopic domains of space-time are a spectacular manifestation of the wave nature of matter. Because of their unique coherence properties, Bose-Einstein condensates are ideal sources for an atom interferometer in extended free fall. In this Letter we report on the realization of an asymmetric Mach-Zehnder interferometer operated with a Bose-Einstein condensate in microgravity. The resulting interference pattern is similar to the one in the far field of a double slit and shows a linear scaling with the time the wave packets expand. We employ delta-kick cooling in order to enhance the signal and extend our atom interferometer. Our experiments demonstrate the high potential of interferometers operated with quantum gases for probing the fundamental concepts of quantum mechanics and general relativity.

Publication Types