Display options
Share it on

Genome Med. 2013 Apr 05;5(4):30. doi: 10.1186/gm434. eCollection 2013.

Tumor-associated copy number changes in the circulation of patients with prostate cancer identified through whole-genome sequencing.

Genome medicine

Ellen Heitzer, Peter Ulz, Jelena Belic, Stefan Gutschi, Franz Quehenberger, Katja Fischereder, Theresa Benezeder, Martina Auer, Carina Pischler, Sebastian Mannweiler, Martin Pichler, Florian Eisner, Martin Haeusler, Sabine Riethdorf, Klaus Pantel, Hellmut Samonigg, Gerald Hoefler, Herbert Augustin, Jochen B Geigl, Michael R Speicher

Affiliations

  1. Institute of Human Genetics, Medical University of Graz, Harrachgasse 21/8, A-8010 Graz, Austria.
  2. Department of Urology, Medical University of Graz, Auenbruggerplatz 5/6, A-8036 Graz, Austria.
  3. Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Auenbruggerplatz 2, A-8036 Graz, Austria.
  4. Institute of Pathology, Medical University of Graz, Auenbruggerplatz 25, A-8036 Graz, Austria.
  5. Division of Oncology, Medical University of Graz, Auenbruggerplatz 15, A-8036 Graz, Austria.
  6. Department of Obstetrics and Gynecology, Medical University of Graz, Auenbruggerplatz 14, A-8036 Graz, Austria.
  7. Institute of Tumor Biology, University Medical Center Hamburg Eppendorf, Martinistr. 52, D-20246 Hamburg, Germany.

PMID: 23561577 PMCID: PMC3707016 DOI: 10.1186/gm434

Abstract

BACKGROUND: Patients with prostate cancer may present with metastatic or recurrent disease despite initial curative treatment. The propensity of metastatic prostate cancer to spread to the bone has limited repeated sampling of tumor deposits. Hence, considerably less is understood about this lethal metastatic disease, as it is not commonly studied. Here we explored whole-genome sequencing of plasma DNA to scan the tumor genomes of these patients non-invasively.

METHODS: We wanted to make whole-genome analysis from plasma DNA amenable to clinical routine applications and developed an approach based on a benchtop high-throughput platform, that is, Illuminas MiSeq instrument. We performed whole-genome sequencing from plasma at a shallow sequencing depth to establish a genome-wide copy number profile of the tumor at low costs within 2 days. In parallel, we sequenced a panel of 55 high-interest genes and 38 introns with frequent fusion breakpoints such as the TMPRSS2-ERG fusion with high coverage. After intensive testing of our approach with samples from 25 individuals without cancer we analyzed 13 plasma samples derived from five patients with castration resistant (CRPC) and four patients with castration sensitive prostate cancer (CSPC).

RESULTS: The genome-wide profiling in the plasma of our patients revealed multiple copy number aberrations including those previously reported in prostate tumors, such as losses in 8p and gains in 8q. High-level copy number gains in the AR locus were observed in patients with CRPC but not with CSPC disease. We identified the TMPRSS2-ERG rearrangement associated 3-Mbp deletion on chromosome 21 and found corresponding fusion plasma fragments in these cases. In an index case multiregional sequencing of the primary tumor identified different copy number changes in each sector, suggesting multifocal disease. Our plasma analyses of this index case, performed 13 years after resection of the primary tumor, revealed novel chromosomal rearrangements, which were stable in serial plasma analyses over a 9-month period, which is consistent with the presence of one metastatic clone.

CONCLUSIONS: The genomic landscape of prostate cancer can be established by non-invasive means from plasma DNA. Our approach provides specific genomic signatures within 2 days which may therefore serve as 'liquid biopsy'.

References

  1. Clin Cancer Res. 2008 Oct 1;14(19):6302-9 - PubMed
  2. Proc Natl Acad Sci U S A. 2005 Nov 8;102(45):16368-73 - PubMed
  3. Bioinformatics. 2004 Dec 12;20(18):3413-22 - PubMed
  4. Nat Genet. 1995 Apr;9(4):401-6 - PubMed
  5. Mol Endocrinol. 2000 Aug;14(8):1187-97 - PubMed
  6. Cancer Res. 2009 Oct 1;69(19):7793-802 - PubMed
  7. Cancer Res. 2012 Feb 1;72(3):616-25 - PubMed
  8. Cancer Res. 2009 Apr 1;69(7):2912-8 - PubMed
  9. Science. 2005 Oct 28;310(5748):644-8 - PubMed
  10. Nat Med. 2009 May;15(5):559-65 - PubMed
  11. Nat Genet. 2012 May 20;44(6):685-9 - PubMed
  12. Clin Cancer Res. 2011 Jun 15;17(12):3903-12 - PubMed
  13. Bioinformatics. 2009 Jul 15;25(14):1754-60 - PubMed
  14. Nature. 2010 Oct 28;467(7319):1061-73 - PubMed
  15. Nat Rev Cancer. 2011 Jun;11(6):426-37 - PubMed
  16. Cancer Cell. 2010 Jul 13;18(1):11-22 - PubMed
  17. Eur Urol. 2009 Aug;56(2):275-86 - PubMed
  18. Clin Cancer Res. 2007 Feb 1;13(3):920-8 - PubMed
  19. Urol J. 2007 Spring;4(2):95-100 - PubMed
  20. Genes Chromosomes Cancer. 2010 Nov;49(11):1062-9 - PubMed
  21. Cancer Discov. 2012 Nov;2(11):995-1003 - PubMed
  22. Genome Res. 2010 Sep;20(9):1297-303 - PubMed
  23. Lancet Oncol. 2012 Nov;13(11):1105-13 - PubMed
  24. Clin Chem. 2013 Jan;59(1):211-24 - PubMed
  25. Lab Chip. 2010 Jan 7;10(1):27-9 - PubMed
  26. Proc Natl Acad Sci U S A. 2008 Oct 21;105(42):16266-71 - PubMed
  27. Ann Oncol. 2009 Jan;20(1):27-33 - PubMed
  28. Bioinformatics. 2008 Apr 1;24(7):1014-5 - PubMed
  29. PLoS One. 2011;6(7):e21791 - PubMed
  30. Future Oncol. 2009 Dec;5(10):1555-84 - PubMed
  31. Nucleic Acids Res. 2010 Sep;38(16):e164 - PubMed
  32. Proc Natl Acad Sci U S A. 2011 Oct 11;108(41):17087-92 - PubMed
  33. Proc Natl Acad Sci U S A. 2008 Dec 23;105(51):20458-63 - PubMed
  34. BMC Bioinformatics. 2011 Mar 17;12:77 - PubMed
  35. Nature. 2012 Jul 12;487(7406):239-43 - PubMed
  36. PLoS One. 2010 May 03;5(5):e10439 - PubMed
  37. Nat Protoc. 2012 May 03;7(6):1024-41 - PubMed
  38. J Clin Oncol. 2011 Sep 20;29(27):3695-704 - PubMed
  39. Nature. 2011 Feb 10;470(7333):214-20 - PubMed
  40. Lancet Oncol. 2012 Nov;13(11):1114-24 - PubMed
  41. Nat Biotechnol. 2012 May;30(5):434-9 - PubMed
  42. Cancer Res. 2013 May 15;73(10):2965-75 - PubMed
  43. Nat Rev Clin Oncol. 2010 Jul;7(7):394-400 - PubMed
  44. Biostatistics. 2004 Oct;5(4):557-72 - PubMed
  45. Urol Clin North Am. 2010 Feb;37(1):131-41, Table of Contents - PubMed
  46. Cancer Cell. 2011 Aug 16;20(2):173-86 - PubMed
  47. Genet Med. 2011 Nov;13(11):913-20 - PubMed
  48. Genes Chromosomes Cancer. 2002 May;34(1):1-8 - PubMed
  49. Nature. 2011 Apr 7;472(7341):90-4 - PubMed
  50. J Clin Oncol. 2005 Nov 10;23(32):8253-61 - PubMed
  51. Genome Res. 2002 Apr;12(4):656-64 - PubMed
  52. Eur J Cancer. 2002 Jan;38(1):99-166 - PubMed
  53. Nucleic Acids Res. 2009 Aug;37(15):e105 - PubMed
  54. Clin Cancer Res. 2000 Mar;6(3):1038-45 - PubMed
  55. Nature. 2007 Aug 2;448(7153):595-9 - PubMed
  56. Sci Transl Med. 2010 Mar 31;2(25):25ra23 - PubMed
  57. Nat Protoc. 2007;2(12):3173-84 - PubMed
  58. Genes Chromosomes Cancer. 2003 Apr;36(4):425-6 - PubMed
  59. Sci Transl Med. 2012 Nov 28;4(162):162ra154 - PubMed
  60. Sci Transl Med. 2010 Feb 24;2(20):20ra14 - PubMed
  61. Nat Med. 2008 Sep;14(9):985-90 - PubMed
  62. Int J Cancer. 2013 Jul 15;133(2):346-56 - PubMed
  63. Heredity (Edinb). 2012 Jan;108(1):75-85 - PubMed
  64. Sci Transl Med. 2012 May 30;4(136):136ra68 - PubMed
  65. Genome Res. 2011 Jan;21(1):47-55 - PubMed
  66. Clin Chem Lab Med. 2013 Jan;51(1):197-204 - PubMed
  67. Proc Natl Acad Sci U S A. 2010 Oct 26;107(43):18392-7 - PubMed

Publication Types

Grant support