Display options
Share it on

Stroke Res Treat. 2013;2013:869327. doi: 10.1155/2013/869327. Epub 2013 Apr 03.

Increased cell fusion in cerebral cortex may contribute to poststroke regeneration.

Stroke research and treatment

Alexander Paltsyn, Svetlana Komissarova, Ivan Dubrovin, Aslan Kubatiev

Affiliations

  1. Institute of General Pathology and Pathophysiology of the Russian Academy of Medical Sciences, Baltiskaya Street 8, Moscow 125315, Russia ; Russian Medical Academy of Postgraduate Education, Moscow, Russia.

PMID: 23691431 PMCID: PMC3649807 DOI: 10.1155/2013/869327

Abstract

In this study, we used a model of a hemorrhagic stroke in a motor zone of the cortex in rats at the age of 3 months The report shows that cortical neurons can fuse with oligodendrocytes. In formed binuclear cells, the nucleus of an oligodendrocyte undergoes neuron specific reprogramming. It can be confirmed by changes in chromatin structure and in size of the second nucleus, by expression of specific neuronal markers and increasing total transcription rate. The nucleus of an oligodendrocyte likely transforms into a second neuronal nucleus. The number of binuclear neurons was validated with quantitative analysis. Fusion of neurons with oligodendrocytes might be a regenerative process in general and specifically following a stroke. The appearance of additional neuronal nuclei increases the functional outcome of the population of neurons. Participation of a certain number of binuclear cells in neuronal function might compensate for a functional deficit that arises from the death of a subset of neurons. After a stroke, the number of binuclear neurons increased in cortex around the lesion zone. In this case, the rate of recovery of stroke-damaged locomotor behavior also increased, which indicates the regenerative role of fusion.

References

  1. Science. 1994 May 20;264(5162):1145-8 - PubMed
  2. Folia Neuropathol. 2011;49(2):78-87 - PubMed
  3. J Cell Biol. 2001 Nov 26;155(5):733-8 - PubMed
  4. Cell. 2005 Jul 15;122(1):133-43 - PubMed
  5. J Anat. 2005 Dec;207(6):687-93 - PubMed
  6. Nat Cell Biol. 2003 Nov;5(11):959-66 - PubMed
  7. Nat Neurosci. 2007 Jun;10(6):727-34 - PubMed
  8. Bull Exp Biol Med. 2008 Oct;146(4):485-8 - PubMed
  9. J Neurosci. 2006 Nov 1;26(44):11413-22 - PubMed
  10. Proc Natl Acad Sci U S A. 1999 Apr 27;96(9):5263-7 - PubMed
  11. J Neurocytol. 2002 Jul-Aug;31(6-7):551-65 - PubMed
  12. Eur J Neurosci. 2009 May;29(9):1842-52 - PubMed
  13. Nat Neurosci. 2008 Aug;11(8):901-7 - PubMed
  14. Vet Pathol. 1994 Mar;31(2):145-67 - PubMed
  15. Adv Space Biol Med. 2005;10:7-40 - PubMed
  16. Patol Fiziol Eksp Ter. 2012 Apr-Jun;(2):22-6 - PubMed
  17. Nat Cell Biol. 2008 May;10(5):575-83 - PubMed
  18. Ann Neurol. 1985 May;17(5):497-504 - PubMed
  19. Nat Rev Neurosci. 2007 Jun;8(6):481-8 - PubMed
  20. Nature. 1997 Apr 3;386(6624):493-5 - PubMed
  21. J Neurosci. 2003 Feb 1;23(3):937-42 - PubMed
  22. Folia Histochem Cytobiol. 2010 Jan;48(2):173-7 - PubMed
  23. Cell. 1999 Jan 8;96(1):25-34 - PubMed
  24. Nat Med. 1998 Nov;4(11):1313-7 - PubMed
  25. J Neurosci Res. 2010 Aug 15;88(11):2385-97 - PubMed
  26. Science. 2007 Mar 2;315(5816):1243-9 - PubMed
  27. Science. 2001 Dec 7;294(5549):2127-30 - PubMed
  28. Nature. 2003 Oct 30;425(6961):968-73 - PubMed
  29. Radiother Oncol. 1994 Apr;31(1):51-60 - PubMed
  30. Trends Immunol. 2008 May;29(5):227-34 - PubMed
  31. J Cereb Blood Flow Metab. 2006 Jan;26(1):1-20 - PubMed
  32. Proc Natl Acad Sci U S A. 1997 Sep 16;94(19):10409-14 - PubMed
  33. Proc Natl Acad Sci U S A. 2003 Feb 18;100(4):2088-93 - PubMed
  34. Cell. 1999 Jun 11;97(6):703-16 - PubMed
  35. Proc Natl Acad Sci U S A. 1999 May 11;96(10):5768-73 - PubMed
  36. Bull Exp Biol Med. 2009 Nov;148(5):825-8 - PubMed
  37. J Neurosci. 2006 Jan 4;26(1):3-11 - PubMed

Publication Types