Display options
Share it on

Adipocyte. 2013 Jan 01;2(1):12-16. doi: 10.4161/adip.22296.

Contribution of lipid-reactive natural killer T cells to obesity-associated inflammation and insulin resistance.

Adipocyte

Lan Wu, Luc Van Kaer

Affiliations

  1. Department of Pathology, Microbiology and Immunology; Vanderbilt University School of Medicine; Nashville, TN USA.

PMID: 23700548 PMCID: PMC3661135 DOI: 10.4161/adip.22296

Abstract

Obesity is associated with a low-grade, chronic inflammation that promotes the development of a variety of diseases, most notably type 2 diabetes. A number of cell types of the innate and adaptive immune systems have been implicated in this process. Recent studies have focused on the role of natural killer T (NKT) cells, a subset of T lymphocytes that react with lipids, in the development of obesity-associated diseases. These studies have shown that invariant NKT (iNKT) cells, a population of NKT cells expressing a semi-invariant T cell receptor, become rapidly activated in response to lipid excess, and that these cells influence the capacity of other leukocytes to produce cytokines during the progression of obesity. The role of NKT cells in obesity-associated inflammation and insulin resistance has been investigated using NKT cell-deficient animals, adoptive transfer of NKT cells and an iNKT cell agonist. While divergent results have been obtained, it is now clear that NKT cells can modulate the inflammatory milieu in obesity, suggesting that these cells could be targeted for therapeutic intervention in obesity-associated diseases.

Keywords: CD1d; diabetes; immunotherapy; inflammation; insulin resistance; lipid; metabolic disease; natural killer T cells; obesity

References

  1. Lab Invest. 2007 Sep;87(9):927-37 - PubMed
  2. Annu Rev Immunol. 2004;22:817-90 - PubMed
  3. PLoS One. 2012;7(2):e30568 - PubMed
  4. Annu Rev Immunol. 2007;25:297-336 - PubMed
  5. J Pathol. 2006 May;209(1):121-8 - PubMed
  6. Trends Immunol. 2013 Feb;34(2):50-8 - PubMed
  7. Gastroenterology. 2012 Aug;143(2):418-28 - PubMed
  8. Science. 2012 Apr 27;336(6080):489-93 - PubMed
  9. J Clin Invest. 2011 Jun;121(6):2111-7 - PubMed
  10. J Biol Chem. 2012 Jul 13;287(29):24378-86 - PubMed
  11. Eur J Immunol. 2009 Jul;39(7):1893-901 - PubMed
  12. Immunity. 2012 Sep 21;37(3):574-87 - PubMed
  13. J Clin Invest. 2012 Sep;122(9):3343-54 - PubMed
  14. PLoS One. 2011;6(9):e25478 - PubMed
  15. Hepatology. 2005 Oct;42(4):880-5 - PubMed
  16. Annu Rev Immunol. 2011;29:415-45 - PubMed
  17. J Clin Invest. 2008 Sep;118(9):2992-3002 - PubMed
  18. J Biol Chem. 2012 Apr 20;287(17):13561-71 - PubMed
  19. J Clin Invest. 2009 May;119(5):1241-50 - PubMed
  20. J Immunol. 2010 Feb 1;184(3):1218-26 - PubMed
  21. Trends Immunol. 2003 Jul;24(7):364-9 - PubMed
  22. Proc Natl Acad Sci U S A. 2012 May 8;109(19):E1143-52 - PubMed
  23. Annu Rev Immunol. 2005;23:877-900 - PubMed
  24. J Hepatol. 2008 Nov;49(5):821-30 - PubMed
  25. J Clin Invest. 2006 Jul;116(7):1793-801 - PubMed
  26. Hepatology. 2004 Aug;40(2):434-41 - PubMed
  27. J Cell Physiol. 2009 Feb;218(2):246-50 - PubMed
  28. Scand J Immunol. 2008 Mar;67(3):230-7 - PubMed
  29. Nat Rev Immunol. 2004 Mar;4(3):231-7 - PubMed
  30. Arterioscler Thromb Vasc Biol. 2010 Feb;30(2):193-9 - PubMed
  31. Curr Opin Immunol. 2007 Jun;19(3):354-64 - PubMed
  32. Genes Dev. 2007 Jun 15;21(12):1443-55 - PubMed
  33. Science. 1997 Nov 28;278(5343):1626-9 - PubMed
  34. PLoS One. 2011;6(6):e19831 - PubMed
  35. J Pharmacol Exp Ther. 2006 Oct;319(1):105-10 - PubMed
  36. Annu Rev Immunol. 2003;21:483-513 - PubMed

Publication Types

Grant support