Display options
Share it on

J Phys Chem C Nanomater Interfaces. 2010 Oct 28;114(42):18115-18120. doi: 10.1021/jp107559x. Epub 2010 Oct 05.

Dynamic Imaging Analysis of SERS-Active Nanoparticle Clusters in Suspension.

The journal of physical chemistry. C, Nanomaterials and interfaces

Alastair W Wark, Robert J Stokes, Steven B Darby, W Ewen Smith, Duncan Graham

Affiliations

  1. Centre for Molecular Nanometrology, WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, U.K., G1 1XL.

PMID: 23710264 PMCID: PMC3660949 DOI: 10.1021/jp107559x

Abstract

A novel wide-field approach for the real-time Surface Enhanced Raman Scattering (SERS) imaging of multiple silver nanoparticle clusters suspended in solution is described. This method enables direct correlation of the SERS activity of a single nanoparticle aggregate and its size through measurement of the cluster diffusion coefficient and can also be performed in a high-throughput basis. As a first demonstration, we investigate the salt-induced aggregation of silver nanoparticles in the presence of a reporter tag molecule, which has a high affinity for the nanoparticle surface. In addition to tracking individual particles, direct comparison of Rayleigh and SERS videos of the same colloid solution enabled measurement of the fraction of individual clusters that are SERS active and the dependence of this value on the relative concentration of the tag molecule. Furthermore, given the ability to also rapidly profile any nonuniformity in particle size distributions, we expect this approach will not only provide a new tool for the fundamental understanding of SERS but also significantly contribute to the development of an array of emerging nanoparticle-enhanced biomolecule and imaging detection platforms.

References

  1. Chem Soc Rev. 2008 Jan;37(1):42-55 - PubMed
  2. Biophys J. 1997 Apr;72(4):1744-53 - PubMed
  3. ACS Nano. 2008 Jul;2(7):1371-80 - PubMed
  4. J Am Chem Soc. 2010 Aug 11;132(31):10903-10 - PubMed
  5. J Phys Chem C Nanomater Interfaces. 2009 Jan 1;113(39):16839-16842 - PubMed
  6. J Am Chem Soc. 2010 May 5;132(17):6081-90 - PubMed
  7. Nano Lett. 2005 Aug;5(8):1569-74 - PubMed
  8. Chem Commun (Camb). 2002 Mar 21;(6):580-1 - PubMed
  9. Nano Lett. 2006 Dec;6(12):2639-41 - PubMed
  10. Analyst. 2002 Jun;127(6):838-41 - PubMed
  11. Nat Methods. 2010 Apr;7(4):275-85 - PubMed
  12. Anal Chem. 2003 Aug 15;75(16):4312-8 - PubMed
  13. Anal Chem. 2006 Jan 1;78(1):224-30 - PubMed
  14. Faraday Discuss. 2006;132:135-45; discussion 147-58 - PubMed
  15. Nano Lett. 2010 Jan;10(1):211-8 - PubMed
  16. J Phys Chem A. 2005 Aug 25;109(33):7405-10 - PubMed
  17. J Am Chem Soc. 2010 Mar 24;132(11):3644-5 - PubMed
  18. ACS Nano. 2009 Jun 23;3(6):1477-84 - PubMed
  19. J Am Chem Soc. 2008 Sep 24;130(38):12616-7 - PubMed
  20. Chem Soc Rev. 2008 May;37(5):1042-51 - PubMed
  21. J Am Chem Soc. 2009 Jan 14;131(1):162-9 - PubMed
  22. Nat Biotechnol. 2008 Jan;26(1):83-90 - PubMed
  23. Phys Chem Chem Phys. 2008 Oct 28;10(40):6079-89 - PubMed
  24. Analyst. 2009 Jan;134(1):170-5 - PubMed
  25. Chem Commun (Camb). 2010 Aug 7;46(29):5247-9 - PubMed
  26. Angew Chem Int Ed Engl. 2007;46(11):1829-31 - PubMed
  27. J Am Chem Soc. 2006 Dec 13;128(49):15580-1 - PubMed

Publication Types