Display options
Share it on

Front Psychol. 2013 May 13;4:256. doi: 10.3389/fpsyg.2013.00256. eCollection 2013.

Sleep neuroimaging and models of consciousness.

Frontiers in psychology

Enzo Tagliazucchi, Marion Behrens, Helmut Laufs

Affiliations

  1. Neurology Department and Brain Imaging Center, Goethe University Frankfurt Frankfurt am Main, Germany.

PMID: 23717291 PMCID: PMC3651967 DOI: 10.3389/fpsyg.2013.00256

Abstract

Human deep sleep is characterized by reduced sensory activity, responsiveness to stimuli, and conscious awareness. Given its ubiquity and reversible nature, it represents an attractive paradigm to study the neural changes which accompany the loss of consciousness in humans. In particular, the deepest stages of sleep can serve as an empirical test for the predictions of theoretical models relating the phenomenology of consciousness with underlying neural activity. A relatively recent shift of attention from the analysis of evoked responses toward spontaneous (or "resting state") activity has taken place in the neuroimaging community, together with the development of tools suitable to study distributed functional interactions. In this review we focus on recent functional Magnetic Resonance Imaging (fMRI) studies of spontaneous activity during sleep and their relationship with theoretical models for human consciousness generation, considering the global workspace theory, the information integration theory, and the dynamical core hypothesis. We discuss the venues of research opened by these results, emphasizing the need to extend the analytic methodology in order to obtain a dynamical picture of how functional interactions change over time and how their evolution is modulated during different conscious states. Finally, we discuss the need to experimentally establish absent or reduced conscious content, even when studying the deepest sleep stages.

Keywords: EEG; consciousness; fMRI; resting state; sleep

References

  1. Cereb Cortex. 2011 Sep;21(9):2082-93 - PubMed
  2. Curr Opin Neurobiol. 2013 Apr;23(2):162-71 - PubMed
  3. Philos Trans R Soc Lond B Biol Sci. 2005 May 29;360(1457):1001-13 - PubMed
  4. Neuron. 2000 Dec;28(3):991-9 - PubMed
  5. Brain Res Bull. 2001 Feb;54(3):287-98 - PubMed
  6. Neuroimage. 2012 Sep;62(3):2129-39 - PubMed
  7. Ann N Y Acad Sci. 2008;1129:330-4 - PubMed
  8. Neurosci Lett. 2011 Jan 20;488(2):158-63 - PubMed
  9. Science. 1998 Dec 4;282(5395):1846-51 - PubMed
  10. Trends Cogn Sci. 2010 Apr;14(4):180-90 - PubMed
  11. Psychophysiology. 1983 Sep;20(5):562-8 - PubMed
  12. Neuroscientist. 2003 Oct;9(5):301-10 - PubMed
  13. Brain. 2002 May;125(Pt 5):1105-15 - PubMed
  14. Nat Neurosci. 2001 Jul;4(7):752-8 - PubMed
  15. Proc Natl Acad Sci U S A. 2011 May 3;108(18):7641-6 - PubMed
  16. BMC Neurosci. 2003 Dec 02;4:31 - PubMed
  17. Neuroimage. 2013 Apr 15;70:327-39 - PubMed
  18. Physiol Behav. 1993 Oct;54(4):795-802 - PubMed
  19. Cereb Cortex. 2009 Jan;19(1):72-8 - PubMed
  20. Biol Bull. 2008 Dec;215(3):216-42 - PubMed
  21. Proc Natl Acad Sci U S A. 2012 Apr 10;109(15):5856-61 - PubMed
  22. J Clin Sleep Med. 2007 Dec 15;3(7):752 - PubMed
  23. Front Hum Neurosci. 2012 Dec 28;6:339 - PubMed
  24. J Sleep Res. 2012 Feb;21(1):10-20 - PubMed
  25. Can J Exp Psychol. 2000 Dec;54(4):255-65 - PubMed
  26. Trends Cogn Sci. 2004 Sep;8(9):418-25 - PubMed
  27. Neuroimage. 2012 Jan 16;59(2):1631-8 - PubMed
  28. PLoS Comput Biol. 2008 Jun 13;4(6):e1000091 - PubMed
  29. Proc Natl Acad Sci U S A. 2006 Jul 11;103(28):10799-804 - PubMed
  30. Science. 2006 Nov 24;314(5803):1249-50 - PubMed
  31. Neuroimage. 2010 Mar;50(1):81-98 - PubMed
  32. Proc Natl Acad Sci U S A. 1994 May 24;91(11):5033-7 - PubMed
  33. Nat Rev Neurosci. 2009 Mar;10(3):186-98 - PubMed
  34. Hum Brain Mapp. 2008 Jun;29(6):671-82 - PubMed
  35. Sleep. 1981;4(4):400-7 - PubMed
  36. BMC Neurosci. 2004 Nov 02;5:42 - PubMed
  37. Sleep. 2010 Jan;33(1):59-68 - PubMed
  38. Neuroimage. 2012 Nov 15;63(3):1712-9 - PubMed
  39. Neuroimage. 2013 May 15;72:227-36 - PubMed
  40. Proc Natl Acad Sci U S A. 2013 Apr 9;110(15):6169-74 - PubMed
  41. Proc Natl Acad Sci U S A. 2003 Jul 8;100(14):8520-5 - PubMed
  42. Proc Natl Acad Sci U S A. 2001 Jan 16;98(2):676-82 - PubMed
  43. Proc Natl Acad Sci U S A. 2007 Jun 12;104(24):10240-5 - PubMed
  44. Clin Neurophysiol. 2012 Feb;123(2):303-9 - PubMed
  45. Proc Natl Acad Sci U S A. 2012 Apr 3;109(14):5487-92 - PubMed
  46. J Neurosci. 2010 Aug 25;30(34):11379-87 - PubMed
  47. Front Neurol. 2012 May 17;3:80 - PubMed
  48. Cereb Cortex. 2014 Jun;24(6):1529-39 - PubMed
  49. Science. 2009 May 22;324(5930):1084-7 - PubMed
  50. Proc Natl Acad Sci U S A. 2003 Apr 29;100(9):5520-4 - PubMed
  51. Front Physiol. 2012 Feb 08;3:15 - PubMed
  52. Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3829-33 - PubMed
  53. Proc Natl Acad Sci U S A. 2012 Feb 21;109(8):3131-6 - PubMed
  54. Hum Brain Mapp. 2013 Sep;34(9):2154-77 - PubMed
  55. Proc Natl Acad Sci U S A. 2009 Mar 17;106(11):4489-94 - PubMed
  56. Proc Natl Acad Sci U S A. 2009 Jul 7;106(27):11376-81 - PubMed
  57. Proc Natl Acad Sci U S A. 1997 Nov 25;94(24):12740-1 - PubMed
  58. Neuroimage. 2012 Oct 15;63(1):63-72 - PubMed
  59. J Neurosci. 2007 Mar 14;27(11):2858-65 - PubMed
  60. Arch Ital Biol. 2012 Jun-Sep;150(2-3):172-84 - PubMed
  61. Phys Rev Lett. 2013 Apr 26;110(17):178101 - PubMed
  62. Arch Ital Biol. 2010 Sep;148(3):299-322 - PubMed
  63. Science. 2005 Sep 30;309(5744):2228-32 - PubMed
  64. Curr Opin Neurobiol. 1996 Apr;6(2):171-8 - PubMed
  65. Neuroimage. 2010 Oct 1;52(4):1162-70 - PubMed
  66. Science. 2000 Oct 13;290(5490):350-3 - PubMed

Publication Types