Display options
Share it on

Front Plant Sci. 2013 Jun 26;4:223. doi: 10.3389/fpls.2013.00223. eCollection 2013.

Are sucrose transporter expression profiles linked with patterns of biomass partitioning in Sorghum phenotypes?.

Frontiers in plant science

Ricky J Milne, Caitlin S Byrt, John W Patrick, Christopher P L Grof

Affiliations

  1. School of Environmental and Life Sciences, University of Newcastle, Newcastle NSW, Australia.

PMID: 23805151 PMCID: PMC3693075 DOI: 10.3389/fpls.2013.00223

Abstract

Sorghum bicolor is a genetically diverse C4 monocotyledonous species, encompassing varieties capable of producing high grain yields as well as sweet types which accumulate soluble sugars (predominantly sucrose) within their stems to high concentrations. Sucrose produced in leaves (sources) enters the phloem and is transported to regions of growth and storage (sinks). It is likely that sucrose transporter (SUT) proteins play pivotal roles in phloem loading and the delivery of sucrose to growth and storage sinks in all Sorghum ecotypes. Six SUTs are present in the published Sorghum genome, based on the BTx623 grain cultivar. Homologues of these SUTs were cloned and sequenced from the sweet cultivar Rio, and compared with the publically available genome information. SbSUT5 possessed nine amino acid sequence differences between the two varieties. Two of the remaining five SUTs exhibited single variations in their amino acid sequences (SbSUT1 and SbSUT2) whilst the rest shared identical sequences. Complementation of a mutant Saccharomyces yeast strain (SEY6210), unable to grow upon sucrose as the sole carbon source, demonstrated that the Sorghum SUTs were capable of transporting sucrose. SbSUT1, SbSUT4, and SbSUT6 were highly expressed in mature leaf tissues and hence may contribute to phloem loading. In contrast, SbSUT2 and SbSUT5 were expressed most strongly in sinks consistent with a possible role of facilitating sucrose import into stem storage pools and developing inflorescences.

Keywords: Sorghum; expression profiling; source–sink pathway; sucrose storage; sucrose transporters

References

  1. Plant Cell. 2003 Jun;15(6):1375-85 - PubMed
  2. Mol Cell Biol. 1988 Nov;8(11):4936-48 - PubMed
  3. Plant Cell Physiol. 2003 Mar;44(3):223-32 - PubMed
  4. Plant Physiol. 2006 May;141(1):196-207 - PubMed
  5. J Exp Bot. 2009;60(3):881-92 - PubMed
  6. Plant Mol Biol. 2008 Oct;68(3):289-99 - PubMed
  7. Annu Rev Plant Biol. 2004;55:341-72 - PubMed
  8. Plant J. 2011 Mar;65(5):757-70 - PubMed
  9. Plant Physiol. 2011 Sep;157(1):109-19 - PubMed
  10. J Plant Res. 2011 May;124(3):395-403 - PubMed
  11. J Biol Chem. 2012 Aug 31;287(36):30296-304 - PubMed
  12. Yeast. 1991 Oct;7(7):691-2 - PubMed
  13. Plant Biol (Stuttg). 2012 Mar;14(2):325-36 - PubMed
  14. BMC Plant Biol. 2007 Jun 20;7:33 - PubMed
  15. Plant Physiol. 2009 Jan;149(1):71-81 - PubMed
  16. New Phytol. 2006;171(4):759-70 - PubMed
  17. J Exp Bot. 2002 Jul;53(374):1671-6 - PubMed
  18. Bioinformatics. 2004 Nov 22;20(17):3258-60 - PubMed
  19. Plant J. 2007 Feb;49(4):750-64 - PubMed
  20. Plant J. 2011 Oct;68(1):129-36 - PubMed
  21. Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W465-9 - PubMed
  22. J Membr Biol. 2000 Mar 1;174(1):31-40 - PubMed
  23. Plant Cell Physiol. 2001 Oct;42(10):1181-5 - PubMed
  24. Biochim Biophys Acta. 2000 May 1;1465(1-2):246-62 - PubMed
  25. BMC Bioinformatics. 2007 Nov 22;8:460 - PubMed
  26. Plant J. 2000 Mar;21(5):455-67 - PubMed
  27. Plant Physiol. 1983 May;72(1):1-6 - PubMed
  28. Plant Mol Biol. 2002 Oct;50(3):453-62 - PubMed
  29. J Plant Physiol. 2012 Apr 15;169(6):605-13 - PubMed
  30. Proc Natl Acad Sci U S A. 1998 Jul 21;95(15):9025-30 - PubMed
  31. FEBS Lett. 2000 Nov 24;485(2-3):189-94 - PubMed
  32. FEBS Lett. 1995 Aug 21;370(3):264-8 - PubMed
  33. Planta. 1991 Dec;186(1):109-14 - PubMed
  34. Plant Cell Physiol. 2009 Jul;50(7):1329-44 - PubMed
  35. J Biol Chem. 2010 Jan 8;285(2):1138-46 - PubMed
  36. Biochemistry. 2012 Apr 17;51(15):3284-91 - PubMed

Publication Types