Display options
Share it on

Nutr Metab (Lond). 2013 May 29;10(1):40. doi: 10.1186/1743-7075-10-40.

AMP-activated protein kinase regulates L-arginine mediated cellular responses.

Nutrition & metabolism

Srinidi Mohan, Harsh Patel, Jorge Bolinaga, Nathania Soekamto

Affiliations

  1. Department of Pharmaceutical Sciences, College of Pharmacy, University of New England, 716 Stevens Avenue, Portland, ME 04103, USA.

PMID: 23718875 PMCID: PMC3680329 DOI: 10.1186/1743-7075-10-40

Abstract

BACKGROUND: Our prior study revealed the loss in short-term L-Arginine (ARG) therapeutic efficacy after continuous exposure; resulting in tolerance development, mediated by endothelial nitric oxide synthase (eNOS) down-regulation, secondary to oxidative stress and induced glucose accumulation. However, the potential factor regulating ARG cellular response is presently unknown.

METHOD: Human umbilical vein endothelial cells were incubated with 100 μM ARG for 2 h in buffer (short-term or acute), or for 7 days in culture medium and challenged for 2 h in buffer (continuous or chronic), in the presence or absence of other agents. eNOS activity was determined by analyzing cellular nitrite/nitrate (NO2-/NO3-), and AMP-activated protein kinase (AMPK) activity was assayed using SAMS peptide. 13C6 glucose was added to medium to measure glucose uptake during cellular treatments, which were determined by LC-MS/MS. Cellular glucose was identified by o-toluidine method. Superoxide (O2•-) was identified by EPR-spin-trap, and peroxynitrite (ONOO-) was measured by flow-cytometer using aminophenyl fluorescein dye.

RESULTS: Short-term incubation of cells with 100 μM ARG in the presence or absence of 30 μM L-NG-Nitroarginine methyl ester (L-NAME) or 30 μM AMPK inhibitor (compound C, CMP-C) increased cellular oxidative stress and overall glucose accumulation with no variation in glucose transporter-1 (GLUT-1), or AMPK activity from control. The increase in total NO2-/NO3- after 2 h 100 μM ARG exposure, was suppressed in cells co-incubated with 30 μM CMP-C or L-NAME. Long-term exposure of ARG with or without CMP-C or L-NAME suppressed NO2-/NO3-, glucose uptake, GLUT-1, AMPK expression and activity below control, and increased overall cellular glucose, O2•- and ONOO-. Gluconeogenesis inhibition with 30 μM 5-Chloro-2-N-2,5-dichlorobenzenesulfonamido-benzoxazole (CDB) during ARG exposure for 2 h maintained overall cellular glucose to control, but increased cellular glucose uptake. Continuous co-incubation with CDB and ARG increased NO2-/NO3-, glucose uptake, GLUT-1, AMPK expression and activity, and maintained overall cellular glucose, O2•- and ONOO- to control conditions.

CONCLUSION: The present study provides the fundamental evidence for AMPK as the primary modulator of ARG cellular responses and for regulating the mode of glucose accumulation during short-term and continuous ARG treatments.

References

  1. Am J Physiol Renal Physiol. 2006 Aug;291(2):F297-304 - PubMed
  2. J Nutr. 2007 Jun;137(6 Suppl 2):1687S-1692S - PubMed
  3. Br J Pharmacol. 1999 Nov;128(6):1316-22 - PubMed
  4. Biochem Biophys Res Commun. 2007 Mar 23;354(4):1084-8 - PubMed
  5. Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):6954-8 - PubMed
  6. Atherosclerosis. 2008 Sep;200(1):28-36 - PubMed
  7. Blood. 2007 Feb 15;109(4):1568-73 - PubMed
  8. J Biol Chem. 2008 Feb 15;283(7):4439-47 - PubMed
  9. J Chromatogr B Analyt Technol Biomed Life Sci. 2011 Mar 1;879(7-8):467-74 - PubMed
  10. J Biol Chem. 2008 Oct 10;283(41):27452-27461 - PubMed
  11. Arterioscler Thromb Vasc Biol. 2003 Jan 1;23(1):97-103 - PubMed
  12. Am J Cardiol. 1997 Aug 1;80(3):331-3 - PubMed
  13. Kardiol Pol. 2005 May;62(5):421-7 - PubMed
  14. J Am Coll Cardiol. 2000 Mar 1;35(3):706-13 - PubMed
  15. Mol Pharmacol. 1992 Apr;41(4):779-84 - PubMed
  16. Circ Res. 2007 Feb 2;100(2):e12-21 - PubMed
  17. Innate Immun. 2013 Jun;19(3):242-52 - PubMed
  18. Mol Cell Biol. 2006 Aug;26(16):5933-45 - PubMed
  19. Circulation. 2007 Jul 10;116(2):188-95 - PubMed
  20. Clin Nutr. 2004 Aug;23(4):561-9 - PubMed
  21. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10480-4 - PubMed
  22. JAMA. 2006 Jan 4;295(1):58-64 - PubMed
  23. Biochem Biophys Res Commun. 1990 Dec 31;173(3):940-8 - PubMed
  24. Int J Mol Sci. 2012;13(6):7521-31 - PubMed
  25. Cardiovasc Hematol Disord Drug Targets. 2009 Mar;9(1):1-8 - PubMed
  26. Proc Natl Acad Sci U S A. 1998 Aug 4;95(16):9220-5 - PubMed
  27. Circulation. 2006 Apr 4;113(13):1708-14 - PubMed
  28. Mol Pharmacol. 2003 Dec;64(6):1419-27 - PubMed
  29. Eur J Biochem. 1997 Jun 1;246(2):259-73 - PubMed
  30. J Biol Chem. 2003 Jan 31;278(5):3170-5 - PubMed
  31. J Appl Physiol (1985). 2001 Sep;91(3):1017-28 - PubMed
  32. Br J Clin Pharmacol. 1999 Mar;47(3):261-6 - PubMed
  33. Eur J Pediatr. 1995;154(7 Suppl 2):S45-9 - PubMed
  34. Vasc Med. 2005 Nov;10(4):265-74 - PubMed
  35. J Vet Sci. 2009 Mar;10(1):15-22 - PubMed
  36. Circ Res. 2005 Sep 30;97(7):618-28 - PubMed
  37. Free Radic Biol Med. 2001 Dec 1;31(11):1360-7 - PubMed
  38. J Biol Chem. 1998 Oct 2;273(40):25804-8 - PubMed
  39. J Clin Invest. 2006 Sep;116(9):2552-61 - PubMed
  40. Vasc Med. 2000;5(1):11-9 - PubMed
  41. Amino Acids. 2012 Sep;43(3):1179-88 - PubMed
  42. Neuroreport. 1992 May;3(5):409-12 - PubMed
  43. J Biol Chem. 1951 Nov;193(1):265-75 - PubMed
  44. J Biol Chem. 1990 Jun 25;265(18):10173-6 - PubMed
  45. Eur J Pediatr. 1995;154(7 Suppl 2):S40-4 - PubMed
  46. Annu Rev Physiol. 1992;54:885-909 - PubMed

Publication Types