Display options
Share it on

Soft Matter. 2010 Jul 21;6(14):3257-3268. doi: 10.1039/B922647H.

Short-term molecular polarization of cells on symmetric and asymmetric micropatterns.

Soft matter

Kristiana Kandere-Grzybowska, Siowling Soh, Goher Mahmud, Yulia Komarova, Didzis Pilans, Bartosz A Grzybowski

Affiliations

  1. Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.

PMID: 23826026 PMCID: PMC3697907 DOI: 10.1039/B922647H

Abstract

The ability of cells to sense geometrical/physical constraints of local environment is important for cell movements during development, immune surveillance, and in cancer invasion. In this paper, we quantify "front-rear" polarization - the crucial step in initiating cell migration - based on cytoskeleton and substrate adhesion anisotropy in micropatterned cells of well-defined shapes. We then show that the general viewpoint that asymmetric cell shape is one of the defining characteristics of polarized cells is incomplete. Specifically, we demonstrate that cells on circular micropatterned islands can exhibit asymmetric distribution of both filamentous actin (f-actin) and focal adhesions (FAs) as well as directional, lamellipodial-like ruffling activity. This asymmetry, however, is transient and persists only for the period of several hours during which actin filaments and adhesion structures reorganize into symmetric peripheral arrangement. Cells on asymmetric tear-drop shape islands also display polarized f-actin and FAs, but polarization axes are oriented towards the wide end of the islands. Polarization of actin filaments on tear-drop islands is short-term, while focal adhesions remain asymmetrically distributed for long times. From a practical perspective, circular cells constitute a convenient experimental system, in which phenomena related to cell polarization are "decoupled" from the effects of cells' local curvature (constant along circular cell's perimeter), while asymmetric (tear-drop) micropatterned cells standardize the organization of motility machinery of polarized/ moving cells. Both systems may prove useful for the design of diagnostic tools with which to probe and quantify

References

  1. Langmuir. 2005 Mar 29;21(7):2637-40 - PubMed
  2. Nature. 2005 Aug 4;436(7051):704-8 - PubMed
  3. Nat Rev Mol Cell Biol. 2006 Apr;7(4):265-75 - PubMed
  4. Curr Biol. 1999 Jan 14;9(1):11-20 - PubMed
  5. Nature. 2003 Feb 13;421(6924):753-6 - PubMed
  6. Science. 2003 Dec 5;302(5651):1704-9 - PubMed
  7. Cell. 1996 Feb 9;84(3):359-69 - PubMed
  8. J Cell Biol. 2000 Oct 2;151(1):29-40 - PubMed
  9. Cell. 2007 Feb 9;128(3):561-75 - PubMed
  10. Biomaterials. 2007 Aug;28(23):3398-407 - PubMed
  11. J Cell Sci. 1998 Jun;111 ( Pt 12):1649-58 - PubMed
  12. Phys Rev Lett. 2009 Dec 4;103(23):238101 - PubMed
  13. Trends Cell Biol. 2008 Feb;18(2):52-60 - PubMed
  14. Trends Biochem Sci. 2004 Aug;29(8):418-28 - PubMed
  15. J Cell Biol. 2001 Dec 24;155(7):1319-32 - PubMed
  16. J Cell Sci. 2003 Nov 15;116(Pt 22):4605-13 - PubMed
  17. Nat Methods. 2005 Oct;2(10):739-41 - PubMed
  18. Nat Cell Biol. 2003 Apr;5(4):267-70 - PubMed
  19. Cell Motil Cytoskeleton. 2006 Jun;63(6):341-55 - PubMed
  20. Annu Rev Biomed Eng. 2001;3:335-73 - PubMed
  21. Curr Opin Cell Biol. 2002 Apr;14(2):196-202 - PubMed
  22. J Cell Sci. 2005 Sep 15;118(Pt 18):4113-22 - PubMed
  23. Biophys J. 2006 Jan 15;90(2):454-69 - PubMed
  24. Trends Biochem Sci. 2001 Sep;26(9):557-66 - PubMed
  25. PLoS Biol. 2007 Nov;5(11):e317 - PubMed
  26. Proc Natl Acad Sci U S A. 2005 Jan 25;102(4):975-8 - PubMed
  27. Biochem Soc Symp. 1999;65:223-31 - PubMed
  28. Phys Rev Lett. 2004 Dec 31;93(26 Pt 1):268109 - PubMed
  29. Phys Rev Lett. 2007 Apr 20;98(16):168103 - PubMed
  30. Science. 2006 Oct 13;314(5797):298-300 - PubMed
  31. PLoS One. 2008 Sep 18;3(9):e3234 - PubMed
  32. Cell Motil Cytoskeleton. 1988;9(2):111-6 - PubMed
  33. Cell. 2003 Feb 21;112(4):453-65 - PubMed
  34. Nat Rev Mol Cell Biol. 2009 Nov;10(11):778-90 - PubMed
  35. Proc Natl Acad Sci U S A. 2006 Dec 26;103(52):19771-6 - PubMed
  36. J Cell Sci. 2008 Jul 15;121(Pt 14):2406-14 - PubMed
  37. Cell Motil Cytoskeleton. 2001 Oct;50(2):59-68 - PubMed
  38. J Cell Biol. 1999 May 31;145(5):1009-26 - PubMed
  39. J Cell Sci Suppl. 1987;8:19-33 - PubMed
  40. Tissue Eng. 2007 Nov;13(11):2791-801 - PubMed
  41. Cell Motil Cytoskeleton. 2008 Nov;65(11):841-52 - PubMed
  42. Biochim Biophys Acta. 1998 Sep 16;1404(3):271-81 - PubMed
  43. Curr Opin Biotechnol. 2006 Oct;17(5):518-23 - PubMed
  44. FASEB J. 2002 Aug;16(10):1195-204 - PubMed
  45. Eur J Cell Biol. 2009 Dec;88(12):711-7 - PubMed
  46. Trends Cell Biol. 2003 Oct;13(10):526-33 - PubMed
  47. Proc Natl Acad Sci U S A. 2004 Dec 28;101(52):18024-9 - PubMed
  48. J Cell Biol. 1981 Jun;89(3):585-92 - PubMed
  49. J Cell Biol. 2002 Dec 9;159(5):881-91 - PubMed
  50. FEBS Lett. 2008 Jun 18;582(14):2075-85 - PubMed
  51. Science. 2007 Jan 5;315(5808):111-5 - PubMed
  52. Exp Cell Res. 1999 Aug 25;251(1):234-43 - PubMed
  53. Nat Rev Cancer. 2003 Dec;3(12):921-30 - PubMed
  54. Biophys J. 2006 Feb 15;90(4):1439-52 - PubMed
  55. Annu Rev Cell Dev Biol. 2003;19:677-95 - PubMed
  56. Angew Chem Int Ed Engl. 1998 Mar 16;37(5):550-575 - PubMed
  57. J Cell Biol. 1998 Jul 13;142(1):181-90 - PubMed
  58. Biochem Biophys Res Commun. 2003 Jul 25;307(2):355-61 - PubMed
  59. Cell. 2004 Aug 6;118(3):363-73 - PubMed
  60. Langmuir. 2003 Mar 4;19(5):1611-7 - PubMed
  61. Nat Rev Immunol. 2002 Nov;2(11):872-80 - PubMed
  62. J Cell Biol. 1992 Mar;116(5):1157-66 - PubMed

Publication Types

Grant support