Display options
Share it on

Front Neuroanat. 2013 May 29;7:11. doi: 10.3389/fnana.2013.00011. eCollection 2013.

Morphology and connections of intratrigeminal cells and axons in the macaque monkey.

Frontiers in neuroanatomy

Susan Warren, Paul J May

Affiliations

  1. Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center Jackson, MS, USA.

PMID: 23754988 PMCID: PMC3665935 DOI: 10.3389/fnana.2013.00011

Abstract

Trigeminal primary afferent fibers have small receptive fields and discrete submodalities, but second order trigeminal neurons often display larger receptive fields with complex, multimodal responses. Moreover, while most large caliber afferents terminate exclusively in the principal trigeminal nucleus, and pars caudalis (sVc) of the spinal trigeminal nucleus receives almost exclusively small caliber afferents, the characteristics of second order neurons do not always reflect this dichotomy. These surprising characteristics may be due to a network of intratrigeminal connections modifying primary afferent contributions. This study characterizes the distribution and morphology of intratrigeminal cells and axons in a macaque monkeys. Tracer injections centered in the principal nucleus (pV) and adjacent pars oralis retrogradely labeled neurons bilaterally in pars interpolaris (sVi), but only ipsilaterally, in sVc. Labeled axons terminated contralaterally within sVi and caudalis. Features of the intratrigeminal cells in ipsilateral sVc suggest that both nociceptive and non-nociceptive neurons project to principalis. A commissural projection to contralateral principalis was also revealed. Injections into sVc labeled cells and terminals in pV and pars oralis on both sides, indicating the presence of bilateral reciprocal connections. Labeled terminals and cells were also present bilaterally in sVi and in contralateral sVc. Interpolaris injections produced labeling patterns similar to those of sVc. Thus, the rostral and caudal poles of the macaque trigeminal complex are richly interconnected by ipsilateral ascending and descending connections providing an anatomical substrate for complex analysis of oro-facial stimuli. Sparser reciprocal crossed intratrigeminal connections may be important for conjugate reflex movements, such as the corneal blink reflex.

Keywords: blink; face; oro-facial reflexes; somatosensory; trigeminal

References

  1. J Neurosci Methods. 2008 Jan 30;167(2):221-8 - PubMed
  2. J Comp Neurol. 1968 Oct;134(2):127-44 - PubMed
  3. Brain Res. 1976 Nov 26;117(2):227-38 - PubMed
  4. Brain Res. 1982 Mar 25;236(2):463-70 - PubMed
  5. J Neurosci. 2004 Apr 28;24(17):4224-32 - PubMed
  6. J Comp Neurol. 1989 Apr 1;282(1):24-44 - PubMed
  7. Neuroscience. 1985 Jul;15(3):779-97 - PubMed
  8. Neurosci Lett. 1982 Aug 31;31(3):215-20 - PubMed
  9. J Comp Neurol. 1963 Oct;121:271-86 - PubMed
  10. J Physiol. 1971 Nov;218(3):515-32 - PubMed
  11. J Neurosci. 2009 Jan 28;29(4):964-72 - PubMed
  12. J Neurophysiol. 1976 Sep;39(5):936-53 - PubMed
  13. J Neurophysiol. 2004 Apr;91(4):1510-5 - PubMed
  14. J Comp Neurol. 1974 Nov 15;158(2):191-205 - PubMed
  15. Somatosens Mot Res. 1990;7(3):265-88 - PubMed
  16. Neuroscience. 1997 Apr;77(3):863-74 - PubMed
  17. Somatosens Mot Res. 1990;7(4):399-420 - PubMed
  18. Brain Res. 1974 May 31;72(1):147-52 - PubMed
  19. Brain Res. 1984 Jan 2;290(1):136-40 - PubMed
  20. J Neurophysiol. 1973 May;36(3):472-88 - PubMed
  21. Brain Res. 1974 Feb 22;67(2):330-3 - PubMed
  22. J Comp Neurol. 1995 Jul 17;358(1):63-78 - PubMed
  23. J Comp Neurol. 1971 Mar;141(3):273-82 - PubMed
  24. J Comp Neurol. 1975 Oct 1;163(3):347-75 - PubMed
  25. J Neurophysiol. 2000 Aug;84(2):1050-61 - PubMed
  26. Acta Physiol Scand Suppl. 1963;:SUPPL214:1-44 - PubMed
  27. J Comp Neurol. 1961 Aug;117:117-31 - PubMed
  28. J Neurosci Methods. 1985 Apr;13(2):131-8 - PubMed
  29. Exp Neurol. 1962 Feb;5:157-78 - PubMed
  30. Brain Res. 1976 Feb 20;103(2):400-6 - PubMed
  31. Neuroscience. 1983 Jun;9(2):411-20 - PubMed
  32. J Comp Neurol. 1968 Aug;133(4):429-37 - PubMed
  33. J Comp Neurol. 2004 Mar 1;470(2):181-91 - PubMed
  34. Neuroscience. 2002;109(1):183-93 - PubMed
  35. Brain Res. 1987 Nov 10;425(2):234-47 - PubMed
  36. Brain. 1973 Dec;96(4):783-814 - PubMed
  37. Pain. 2002 Feb;95(3):225-238 - PubMed
  38. Brain Res. 1984 Sep 10;309(2):335-40 - PubMed
  39. J Comp Neurol. 1998 Dec 7;402(1):93-110 - PubMed
  40. J Comp Neurol. 1978 Mar 15;178(2):281-312 - PubMed
  41. Brain Res. 1982 Dec 9;252(2):203-11 - PubMed
  42. J Comp Neurol. 1988 Jun 15;272(3):370-82 - PubMed
  43. J Comp Neurol. 1983 May 10;216(2):132-51 - PubMed
  44. Brain Res. 1973 Dec 21;64:442-5 - PubMed
  45. J Neurophysiol. 1969 Mar;32(2):229-38 - PubMed
  46. Annu Rev Physiol. 1972;34:315-36 - PubMed
  47. Brain Res. 1975 Oct 24;97(1):47-60 - PubMed
  48. Somatosens Mot Res. 1990;7(2):153-83 - PubMed
  49. Brain Res. 1982 Aug 19;246(1):7-21 - PubMed
  50. J Neurophysiol. 1981 Feb;45(2):173-92 - PubMed
  51. Exp Brain Res. 1998 Dec;123(4):368-81 - PubMed
  52. J Comp Neurol. 1987 Oct 1;264(1):92-117 - PubMed
  53. Neurosci Lett. 1997 Jul 4;229(3):189-92 - PubMed
  54. Brain Res. 1978 Jan 13;139(2):333-9 - PubMed
  55. Exp Neurol. 1962 Feb;5:139-56 - PubMed
  56. Anat Rec (Hoboken). 2008 Aug;291(8):974-87 - PubMed
  57. Neuroscience. 1984 Dec;13(4):1279-98 - PubMed
  58. J Neurosci. 2008 Feb 20;28(8):1789-97 - PubMed
  59. Brain Res. 1990 Apr 30;514(2):219-37 - PubMed
  60. Neuroscience. 2007 Jun 29;147(2):325-33 - PubMed
  61. Brain Res. 1973 Aug 30;58(2):385-99 - PubMed
  62. Brain Res. 1972 Dec 24;48:27-44 - PubMed
  63. Exp Brain Res. 2010 Apr;201(4):701-17 - PubMed
  64. Exp Neurol. 1967 Feb;17(2):186-202 - PubMed
  65. Neuroscience. 1984 Aug;12(4):1243-60 - PubMed

Publication Types

Grant support