Display options
Share it on

Front Comput Neurosci. 2013 May 28;7:57. doi: 10.3389/fncom.2013.00057. eCollection 2013.

Neural masses and fields in dynamic causal modeling.

Frontiers in computational neuroscience

Rosalyn Moran, Dimitris A Pinotsis, Karl Friston

Affiliations

  1. Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London London, UK ; Virginia Tech Carilion Research Institute, Virginia Tech Roanoke, VA, USA ; Bradley Department of Electrical and Computer Engineering, Virginia Tech Blacksburg, VA, USA.

PMID: 23755005 PMCID: PMC3664834 DOI: 10.3389/fncom.2013.00057

Abstract

Dynamic causal modeling (DCM) provides a framework for the analysis of effective connectivity among neuronal subpopulations that subtend invasive (electrocorticograms and local field potentials) and non-invasive (electroencephalography and magnetoencephalography) electrophysiological responses. This paper reviews the suite of neuronal population models including neural masses, fields and conductance-based models that are used in DCM. These models are expressed in terms of sets of differential equations that allow one to model the synaptic underpinnings of connectivity. We describe early developments using neural mass models, where convolution-based dynamics are used to generate responses in laminar-specific populations of excitatory and inhibitory cells. We show that these models, though resting on only two simple transforms, can recapitulate the characteristics of both evoked and spectral responses observed empirically. Using an identical neuronal architecture, we show that a set of conductance based models-that consider the dynamics of specific ion-channels-present a richer space of responses; owing to non-linear interactions between conductances and membrane potentials. We propose that conductance-based models may be more appropriate when spectra present with multiple resonances. Finally, we outline a third class of models, where each neuronal subpopulation is treated as a field; in other words, as a manifold on the cortical surface. By explicitly accounting for the spatial propagation of cortical activity through partial differential equations (PDEs), we show that the topology of connectivity-through local lateral interactions among cortical layers-may be inferred, even in the absence of spatially resolved data. We also show that these models allow for a detailed analysis of structure-function relationships in the cortex. Our review highlights the relationship among these models and how the hypothesis asked of empirical data suggests an appropriate model class.

Keywords: dynamic causal modeling; electroencephalography; local field potential (LFP); magnetoencephalography (MEG); neural mass models

References

  1. Neuroimage. 2007 Jul 1;36(3):571-80 - PubMed
  2. J Neurophysiol. 2000 Jul;84(1):75-87 - PubMed
  3. J Physiol Paris. 2003 Mar-May;97(2-3):209-19 - PubMed
  4. PLoS Comput Biol. 2013;9(1):e1002872 - PubMed
  5. Biophys J. 1972 Jan;12(1):1-24 - PubMed
  6. Brain Topogr. 1989 Fall-Winter;2(1-2):9-18 - PubMed
  7. J Comput Neurosci. 2001 Jul-Aug;11(1):63-85 - PubMed
  8. Neuroimage. 2009 Feb 1;44(3):701-14 - PubMed
  9. Front Syst Neurosci. 2010 Aug 10;4: - PubMed
  10. Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Apr;73(4 Pt 1):041904 - PubMed
  11. Clin Neurophysiol. 2005 Oct;116(10):2266-301 - PubMed
  12. J Neurosci. 2003 Feb 1;23(3):867-75 - PubMed
  13. Comput Intell Neurosci. 2011;2011:852961 - PubMed
  14. J Neurosci. 2012 Mar 7;32(10):3366-75 - PubMed
  15. Neuroimage. 2013 Feb 1;66:563-76 - PubMed
  16. Nature. 1995 Feb 16;373(6515):612-5 - PubMed
  17. Cereb Cortex. 1991 Jan-Feb;1(1):1-47 - PubMed
  18. J Neurosci. 1990 Jun;10(6):1830-7 - PubMed
  19. Biol Cybern. 2000 Oct;83(4):367-78 - PubMed
  20. Neuroimage. 2008 Aug 1;42(1):272-84 - PubMed
  21. J Neurosci. 2009 Dec 16;29(50):15721-6 - PubMed
  22. Neuroimage. 2013 Jan 15;65:127-38 - PubMed
  23. Proc Natl Acad Sci U S A. 2007 Dec 26;104(52):20961-6 - PubMed
  24. Curr Biol. 2011 Aug 9;21(15):1320-5 - PubMed
  25. Neuroimage. 2010 May 15;51(1):91-101 - PubMed
  26. Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Feb;63(2 Pt 1):021903 - PubMed
  27. Clin Neurophysiol. 2009 Mar;120(3):453-63 - PubMed
  28. Neuroimage. 2012 Jan 16;59(2):1261-74 - PubMed
  29. J Theor Biol. 2000 Jul 7;205(1):17-35 - PubMed
  30. Neuroimage. 2003 Aug;19(4):1273-302 - PubMed
  31. Cereb Cortex. 2003 Apr;13(4):422-33 - PubMed
  32. PLoS Comput Biol. 2008 Aug 29;4(8):e1000092 - PubMed
  33. Proc Natl Acad Sci U S A. 2011 Jul 5;108(27):11262-7 - PubMed
  34. Biol Cybern. 1995 Sep;73(4):357-66 - PubMed
  35. Biol Psychiatry. 2008 Nov 1;64(9):739-49 - PubMed
  36. Neuroimage. 2006 May 1;30(4):1255-72 - PubMed
  37. Phys Rev Lett. 1996 Jul 29;77(5):960-963 - PubMed
  38. Biol Cybern. 1999 Nov;81(5-6):415-24 - PubMed
  39. Kybernetik. 1973 Sep;13(2):55-80 - PubMed
  40. Philos Trans R Soc Lond B Biol Sci. 2005 Apr 29;360(1456):815-36 - PubMed
  41. Neural Comput. 2006 Dec;18(12):3052-68 - PubMed
  42. Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):13473-80 - PubMed
  43. Neuroimage. 2011 Apr 15;55(4):1694-708 - PubMed
  44. Trends Cogn Sci. 2009 Jul;13(7):293-301 - PubMed
  45. Neural Comput. 2003 Nov;15(11):2523-64 - PubMed
  46. Science. 2011 May 13;332(6031):858-62 - PubMed
  47. Neuroimage. 2008 Aug 1;42(1):147-57 - PubMed
  48. Proc R Soc Lond B Biol Sci. 1952 Oct 16;140(899):177-83 - PubMed
  49. Neuroimage. 2002 Jul;16(3 Pt 1):822-35 - PubMed
  50. Neuron. 2012 Nov 21;76(4):695-711 - PubMed
  51. Neuroimage. 2003 Nov;20(3):1743-55 - PubMed
  52. Biol Cybern. 1987;56(2-3):139-50 - PubMed
  53. Neuroimage. 2012 Jan 2;59(1):439-55 - PubMed
  54. Psychophysiology. 2005 Jan;42(1):25-32 - PubMed
  55. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 Dec;60(6 Pt B):7299-311 - PubMed
  56. Cereb Cortex. 2013 Oct;23(10):2394-406 - PubMed
  57. Cereb Cortex. 2006 Sep;16(9):1296-313 - PubMed
  58. Cereb Cortex. 2012 Jun;22(6):1225-36 - PubMed
  59. Hum Brain Mapp. 2009 Jun;30(6):1866-76 - PubMed
  60. Biophys J. 1981 Jul;35(1):193-213 - PubMed
  61. Nat Neurosci. 2011 Jan;14(1):28-30 - PubMed
  62. Phys Rev Lett. 2009 Sep 4;103(10):108104 - PubMed
  63. Hum Brain Mapp. 2002 Mar;15(3):175-98 - PubMed
  64. Neuroimage. 2004 Jul;22(3):1157-72 - PubMed
  65. Neuroimage. 2008 Aug 15;42(2):936-44 - PubMed
  66. J Neurosci. 2012 May 16;32(20):7082-90 - PubMed
  67. J Neurosci. 2012 Jan 25;32(4):1507-12 - PubMed
  68. J Neurophysiol. 2000 Mar;83(3):1733-50 - PubMed
  69. Neuroimage. 2011 Sep 15;58(2):312-22 - PubMed
  70. Cold Spring Harb Symp Quant Biol. 1990;55:651-61 - PubMed
  71. Front Hum Neurosci. 2010 Nov 11;4:190 - PubMed
  72. Neuroimage. 2010 Sep;52(3):731-9 - PubMed
  73. Neuroimage. 2006 May 1;30(4):1273-84 - PubMed
  74. Proc Natl Acad Sci U S A. 2009 May 19;106(20):8356-61 - PubMed
  75. Neuroimage. 2007 Sep 1;37(3):706-20 - PubMed
  76. Neuroimage. 2012 Feb 1;59(3):2374-92 - PubMed
  77. J Physiol. 1991;440:735-69 - PubMed
  78. Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Feb;79(2 Pt 1):021911 - PubMed
  79. Neuroimage. 2012 Aug 15;62(2):791-800 - PubMed
  80. Neuroimage. 2011 Mar 1;55(1):39-48 - PubMed

Publication Types

Grant support