Display options
Share it on

Oncogenesis. 2013 Aug 05;2:e61. doi: 10.1038/oncsis.2013.23.

SOX2 promotes dedifferentiation and imparts stem cell-like features to pancreatic cancer cells.

Oncogenesis

M Herreros-Villanueva, J-S Zhang, A Koenig, E V Abel, T C Smyrk, W R Bamlet, A A-M de Narvajas, T S Gomez, D M Simeone, L Bujanda, D D Billadeau

Affiliations

  1. 1] Division of Oncology Research, Schulze Center for Novel Therapeutics, College of Medicine, Mayo Clinic, Rochester, MN, USA [2] Department of Gastroenterology, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Hospital Donostia/Instituto Biodonostia, Universidad del País Vasco UPV/EHU, San Sebastián, Spain.

PMID: 23917223 PMCID: PMC3759123 DOI: 10.1038/oncsis.2013.23

Abstract

SOX2 (Sex-determining region Y (SRY)-Box2) has important functions during embryonic development and is involved in cancer stem cell (CSC) maintenance, in which it impairs cell growth and tumorigenicity. However, the function of SOX2 in pancreatic cancer cells is unclear. The objective of this study was to analyze SOX2 expression in human pancreatic tumors and determine the role of SOX2 in pancreatic cancer cells regulating CSC properties. In this report, we show that SOX2 is not expressed in normal pancreatic acinar or ductal cells. However, ectopic expression of SOX2 is observed in 19.3% of human pancreatic tumors. SOX2 knockdown in pancreatic cancer cells results in cell growth inhibition via cell cycle arrest associated with p21(Cip1) and p27(Kip1) induction, whereas SOX2 overexpression promotes S-phase entry and cell proliferation associated with cyclin D3 induction. SOX2 expression is associated with increased levels of the pancreatic CSC markers ALDH1, ESA and CD44. Importantly, we show that SOX2 is enriched in the ESA(+)/CD44(+) CSC population from two different patient samples. Moreover, we show that SOX2 directly binds to the Snail, Slug and Twist promoters, leading to a loss of E-Cadherin and ZO-1 expression. Taken together, our findings show that SOX2 is aberrantly expressed in pancreatic cancer and contributes to cell proliferation and stemness/dedifferentiation through the regulation of a set of genes controlling G1/S transition and epithelial-to-mesenchymal transition (EMT) phenotype, suggesting that targeting SOX2-positive cancer cells could be a promising therapeutic strategy.

References

  1. Br J Cancer. 2011 Apr 26;104(9):1410-7 - PubMed
  2. Mol Cell Biol. 2005 Jul;25(14):6031-46 - PubMed
  3. Cancer Res. 2009 Jul 15;69(14):5820-8 - PubMed
  4. Neoplasia. 2012 Jun;14(6):519-25 - PubMed
  5. Trends Genet. 2009 Jan;25(1):19-29 - PubMed
  6. Nat Protoc. 2010 Apr;5(4):811-20 - PubMed
  7. Oncogene. 2012 May 3;31(18):2270-82 - PubMed
  8. Cell Stem Cell. 2007 Sep 13;1(3):313-23 - PubMed
  9. Nature. 2009 Aug 27;460(7259):1136-9 - PubMed
  10. Biosci Rep. 2011 Feb;31(1):45-55 - PubMed
  11. Cell. 2008 May 16;133(4):704-15 - PubMed
  12. EMBO Mol Med. 2012 Mar;4(3):218-33 - PubMed
  13. Nat Genet. 2012 Oct;44(10):1074-5 - PubMed
  14. Cell Death Dis. 2013 May 09;4:e627 - PubMed
  15. Cell. 2006 Aug 25;126(4):663-76 - PubMed
  16. Semin Cancer Biol. 2012 Jun;22(3):194-207 - PubMed
  17. PLoS One. 2011;6(11):e26740 - PubMed
  18. PLoS One. 2010 Jan 29;5(1):e8960 - PubMed
  19. Pancreas. 2006 Mar;32(2):164-70 - PubMed
  20. CA Cancer J Clin. 2012 Jan-Feb;62(1):10-29 - PubMed
  21. Mol Cell Biol. 1995 Dec;15(12):7143-51 - PubMed
  22. Clin Cancer Res. 2012 Aug 15;18(16):4277-84 - PubMed
  23. PLoS One. 2011;6(6):e20636 - PubMed
  24. Stem Cells. 2007 Oct;25(10):2524-33 - PubMed
  25. BMC Cancer. 2012 Aug 29;12:377 - PubMed
  26. Oncogene. 2011 Nov 17;30(46):4609-21 - PubMed
  27. Br J Cancer. 2008 Feb 26;98(4):824-31 - PubMed
  28. Nature. 2009 Aug 27;460(7259):1132-5 - PubMed
  29. Cancer Res. 2009 Aug 15;69(16):6704-12 - PubMed
  30. Int J Biochem Cell Biol. 2010 Mar;42(3):381-90 - PubMed
  31. Cell Stem Cell. 2007 Jun 7;1(1):39-49 - PubMed
  32. Oncogene. 2012 Mar 15;31(11):1354-65 - PubMed
  33. Cell Cycle. 2012 Apr 1;11(7):1282-90 - PubMed
  34. Nat Genet. 2009 Nov;41(11):1238-42 - PubMed
  35. Mol Biol Cell. 2011 Jun 15;22(12):2119-30 - PubMed
  36. J Endocrinol. 2007 Dec;195(3):407-14 - PubMed
  37. Cell. 2007 Nov 30;131(5):861-72 - PubMed
  38. Cell. 2012 Jan 20;148(1-2):349-61 - PubMed
  39. Nat Rev Cancer. 2003 Dec;3(12):895-902 - PubMed
  40. Clin Cancer Res. 2007 Aug 15;13(16):4769-76 - PubMed
  41. Genes Dev. 2003 Jan 1;17(1):126-40 - PubMed
  42. J Endocrinol. 2011 Nov;211(2):169-76 - PubMed
  43. PLoS One. 2012;7(5):e36326 - PubMed
  44. PLoS One. 2012;7(8):e44087 - PubMed
  45. PLoS One. 2012;7(8):e41335 - PubMed
  46. Cancer Res. 2007 Feb 1;67(3):1030-7 - PubMed
  47. Oncotarget. 2011 Jan-Feb;2(1-2):99-101 - PubMed
  48. Cell Death Differ. 2007 Feb;14(2):254-65 - PubMed
  49. Science. 2007 Dec 21;318(5858):1917-20 - PubMed
  50. Cell Stem Cell. 2011 Nov 4;9(5):433-46 - PubMed

Publication Types

Grant support