Display options
Share it on

Front Mol Neurosci. 2013 Aug 09;6:20. doi: 10.3389/fnmol.2013.00020. eCollection 2013.

L-type CaV1.2 deletion in the cochlea but not in the brainstem reduces noise vulnerability: implication for CaV1.2-mediated control of cochlear BDNF expression.

Frontiers in molecular neuroscience

Annalisa Zuccotti, Sze C Lee, Dario Campanelli, Wibke Singer, Somisetty V Satheesh, Tommaso Patriarchi, Hyun-Soon Geisler, Iris Köpschall, Karin Rohbock, Hans G Nothwang, Jing Hu, Johannes W Hell, Thomas Schimmang, Lukas Rüttiger, Marlies Knipper

Affiliations

  1. Molecular Physiology of Hearing, Hearing Research Center Tübingen, Department of Otolaryngology, University of Tübingen Tübingen, Germany.

PMID: 23950737 PMCID: PMC3739414 DOI: 10.3389/fnmol.2013.00020

Abstract

Voltage-gated L-type Ca(2+) channels (L-VGCCs) like CaV1.2 are assumed to play a crucial role for controlling release of trophic peptides including brain-derived neurotrophic factor (BDNF). In the inner ear of the adult mouse, besides the well-described L-VGCC CaV1.3, CaV1.2 is also expressed. Due to lethality of constitutive CaV1.2 knock-out mice, the function of this ion channel as well as its putative relationship to BDNF in the auditory system is entirely elusive. We recently described that BDNF plays a differential role for inner hair cell (IHC) vesicles release in normal and traumatized condition. To elucidate a presumptive role of CaV1.2 during this process, two tissue-specific conditional mouse lines were generated. To distinguish the impact of CaV1.2 on the cochlea from that on feedback loops from higher auditory centers CaV1.2 was deleted, in one mouse line, under the Pax2 promoter (CaV1.2(Pax2)) leading to a deletion in the spiral ganglion neurons, dorsal cochlear nucleus, and inferior colliculus. In the second mouse line, the Egr2 promoter was used for deleting CaV1.2 (CaV1.2(Egr2)) in auditory brainstem nuclei. In both mouse lines, normal hearing threshold and equal number of IHC release sites were observed. We found a slight reduction of auditory brainstem response wave I amplitudes in the CaV1.2(Pax2) mice, but not in the CaV1.2(Egr2) mice. After noise exposure, CaV1.2(Pax2) mice had less-pronounced hearing loss that correlated with maintenance of ribbons in IHCs and less reduced activity in auditory nerve fibers, as well as in higher brain centers at supra-threshold sound stimulation. As reduced cochlear BDNF mRNA levels were found in CaV1.2(Pax2) mice, we suggest that a CaV1.2-dependent step may participate in triggering part of the beneficial and deteriorating effects of cochlear BDNF in intact systems and during noise exposure through a pathway that is independent of CaV1.2 function in efferent circuits.

Keywords: ABR; BDNF; CaV1.2; L-VGCCs; SOC; inner ear

References

  1. J Neurosci. 2012 Jun 20;32(25):8545-53 - PubMed
  2. PLoS One. 2012;7(11):e49503 - PubMed
  3. Neuroscience. 1992;47(2):303-15 - PubMed
  4. Neuron. 1998 Apr;20(4):727-40 - PubMed
  5. Genesis. 2000 Feb;26(2):123-6 - PubMed
  6. Mol Pharmacol. 2008 Apr;73(4):1085-91 - PubMed
  7. Annu Rev Cell Dev Biol. 2000;16:521-55 - PubMed
  8. Nature. 2005 Dec 15;438(7070):1017-21 - PubMed
  9. Hear Res. 1996 Apr;93(1-2):28-51 - PubMed
  10. J Neurochem. 1996 Jul;67(1):37-45 - PubMed
  11. J Neurobiol. 1999 Feb 15;38(3):338-56 - PubMed
  12. J Physiol. 2005 Jul 1;566(Pt 1):7-12 - PubMed
  13. J Neurochem. 1995 Sep;65(3):1348-57 - PubMed
  14. Mol Neurobiol. 2013 Feb;47(1):261-79 - PubMed
  15. J Physiol. 2010 Jan 1;588(Pt 1):187-99 - PubMed
  16. Brain Res. 2007 Feb 23;1134(1):122-30 - PubMed
  17. Hear Res. 1980 Jul;3(1):45-63 - PubMed
  18. Nat Neurosci. 2000 Jun;3(6):533-5 - PubMed
  19. Cell Tissue Res. 2006 Nov;326(2):347-59 - PubMed
  20. Int J Dev Neurosci. 2002 Nov;20(7):537-54 - PubMed
  21. Proc Natl Acad Sci U S A. 2001 Sep 25;98(20):11024-31 - PubMed
  22. Nature. 1995 Jan 12;373(6510):109 - PubMed
  23. J Neurosci. 2007 Sep 26;27(39):10350-64 - PubMed
  24. J Comp Neurol. 1983 Sep 10;219(2):203-14 - PubMed
  25. Development. 2003 Oct;130(19):4741-50 - PubMed
  26. EMBO J. 2011 Jul 29;30(18):3830-41 - PubMed
  27. Brain Res. 1979 Sep 7;173(1):152-5 - PubMed
  28. J Neurosci. 2009 Nov 11;29(45):14077-85 - PubMed
  29. Genesis. 2004 Apr;38(4):195-9 - PubMed
  30. PLoS One. 2013;8(3):e57247 - PubMed
  31. J Neurosci Res. 2007 Feb 15;85(3):525-35 - PubMed
  32. J Neurosci. 2003 Apr 1;23(7):2572-81 - PubMed
  33. J Neurochem. 2002 Oct;83(1):67-79 - PubMed
  34. Neuroreport. 1998 Jun 22;9(9):1959-62 - PubMed
  35. Hear Res. 1991 Feb;51(2):247-54 - PubMed
  36. J Neurosci. 2012 Jan 11;32(2):405-10 - PubMed
  37. Histol Histopathol. 2003 Oct;18(4):1115-23 - PubMed
  38. J Acoust Soc Am. 1982 Nov;72(5):1441-9 - PubMed
  39. Proc Natl Acad Sci U S A. 2010 Sep 7;107(36):15945-50 - PubMed
  40. J Neurosci. 2008 Oct 15;28(42):10576-86 - PubMed
  41. Neuron. 2002 Jan 31;33(3):383-95 - PubMed
  42. Nat Neurosci. 2002 Jan;5(1):57-63 - PubMed
  43. J Biol Chem. 2000 Dec 15;275(50):39193-9 - PubMed
  44. Hum Mol Genet. 2012 Sep 1;21(17):3896-909 - PubMed
  45. Cell. 2000 Jul 7;102(1):89-97 - PubMed
  46. J Biol Chem. 1999 Oct 15;274(42):30280-7 - PubMed
  47. J Neurosci. 2010 Jun 2;30(22):7587-97 - PubMed
  48. Neuron. 2002 Jan 17;33(2):287-99 - PubMed
  49. Biophys J. 1976 Jul;16(7):719-34 - PubMed
  50. Neuroscientist. 2009 Dec;15(6):611-24 - PubMed
  51. PLoS One. 2011;6(11):e27146 - PubMed
  52. Trends Pharmacol Sci. 2011 Jun;32(6):366-75 - PubMed
  53. Nat Rev Neurosci. 2010 Dec;11(12):812-22 - PubMed
  54. J Cell Biol. 1993 Nov;123(4):949-62 - PubMed
  55. Eur J Neurosci. 2006 Dec;24(12):3372-80 - PubMed
  56. Neuroscience. 2007 Mar 16;145(2):715-26 - PubMed
  57. J Assoc Res Otolaryngol. 2011 Oct;12(5):605-16 - PubMed
  58. J Biol Chem. 2000 Jun 9;275(23):17269-75 - PubMed
  59. Neuroscience. 2006 Dec;143(3):837-49 - PubMed
  60. PLoS One. 2011;6(12):e28441 - PubMed
  61. Neuron Glia Biol. 2011 Feb;7(1):99-108 - PubMed

Publication Types

Grant support