Display options
Share it on

Epigenetics Chromatin. 2013 Jul 17;6(1):22. doi: 10.1186/1756-8935-6-22.

Epigenetic regulation of the ribosomal cistron seasonally modulates enrichment of H2A.Z and H2A.Zub in response to different environmental inputs in carp (Cyprinus carpio).

Epigenetics & chromatin

Nicolas Guillermo Simonet, Mauricio Reyes, Gino Nardocci, Alfredo Molina, Marco Alvarez

Affiliations

  1. Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile. [email protected].

PMID: 23866978 PMCID: PMC3726427 DOI: 10.1186/1756-8935-6-22

Abstract

BACKGROUND: The specific deposition of histone variants into chromatin is an important epigenetic mechanism that contributes to gene regulation through chromatin architectural changes. The histone variant H2A.Z is essential in higher eukaryotes, and its incorporation within chromatin is a relevant process for gene expression and genome stability. However, the dual positive and negative roles of H2A.Z in gene regulation still remain unclear. We previously reported that acclimatization in common carp fish (Cyprinus carpio) involves cyclical seasonal gene reprogramming as an adaptation response to its natural environment, when rRNA synthesis and processing are profoundly affected. Epigenetic mechanisms primarily contribute to the transcriptional modulation of ribosomal genes concomitant with the acclimatization process, thus significantly regulating this process. The aim of this study was to describe the presence of several H2A.Z subtypes in carp, and assess the role of H2A.Z on the ribosomal cistron in summer- and winter-acclimatized carp.

RESULTS: This paper reports for the first time about the transcriptional expression of four different H2A.Z subtypes belonging to the same organism. Remarkably, a novel H2A.Z.7 was found, which corresponds to a tissue-specific histone subtype that contains seven amino acid residues longer than the canonical H2A.Z. Moreover, H2A.Z enrichment through the ribosomal cistron was significantly higher during summer, when rRNA transcription and processing are highly active, than it was in winter. Similar patterns of H2A.Z enrichment are found in two seasonally active promoters for genes transcribed by RNA polymerase II, the L41 and Δ9-desaturase genes. Interestingly, ubiquitylated-H2A.Z (H2A.Zub) was strongly enriched on regulatory regions of the ribosomal cistron in summer-acclimatized carp. Additionally, H2A.Z was present in both heterochromatin and euchromatin states on ribosomal cistron and RNA polymerase II promoters.

CONCLUSIONS: Our study revealed seasonally-dependent H2A.Z enrichment for active ribosomal cistron and RNA polymerase II promoters during the carp environmental adaptation. Moreover, seasonal H2A.Zub enrichment appears as a specific mechanism contributing to the regulation of chromatin architecture under natural conditions. The existence of several H2A.Z subtypes in carp suggests that the epigenetic regulation in this species constitutes a complex and finely tuned mechanism developed to cope with seasonal environmental changes that occur in its habitat.

References

  1. EMBO Rep. 2012 Jun 29;13(7):619-30 - PubMed
  2. Nucleic Acids Res. 1994 Jan 25;22(2):174-9 - PubMed
  3. Epigenetics. 2010 May 16;5(4):267-72 - PubMed
  4. Mol Cell Biol. 1996 Jun;16(6):2878-87 - PubMed
  5. BMC Genomics. 2008 Nov 25;9:557 - PubMed
  6. Cell. 2008 May 16;133(4):627-39 - PubMed
  7. Genome Biol. 2010;11(6):213 - PubMed
  8. Biochem Biophys Res Commun. 2002 Jul 19;295(3):582-6 - PubMed
  9. Cell. 2007 Feb 23;128(4):693-705 - PubMed
  10. Nat Rev Mol Cell Biol. 2003 Aug;4(8):641-9 - PubMed
  11. FEBS Lett. 2000 Jun 30;476(1-2):68-72 - PubMed
  12. Nucleic Acids Res. 2012 Jul;40(13):5951-64 - PubMed
  13. Sci Aging Knowledge Environ. 2003 Apr 09;2003(14):RE4 - PubMed
  14. Epigenetics Chromatin. 2012 Jun 21;5:7 - PubMed
  15. Nucleic Acids Res. 2000 Oct 1;28(19):3811-6 - PubMed
  16. Proc Natl Acad Sci U S A. 2005 Dec 20;102(51):18385-90 - PubMed
  17. Genes Dev. 2006 Mar 15;20(6):711-22 - PubMed
  18. Nat Rev Genet. 2005 Apr;6(4):324-33 - PubMed
  19. Nat Struct Biol. 2000 Dec;7(12):1121-4 - PubMed
  20. Science. 1996 Feb 9;271(5250):815-8 - PubMed
  21. FEBS Lett. 2005 Oct 24;579(25):5553-8 - PubMed
  22. Nat Rev Genet. 2011 Nov 18;12(12):861-74 - PubMed
  23. Cell. 2005 Oct 21;123(2):219-31 - PubMed
  24. J Cell Biochem. 2009 Sep 1;108(1):43-51 - PubMed
  25. Mol Biol Evol. 2011 Oct;28(10):2731-9 - PubMed
  26. Mol Cell Biol. 2007 Sep;27(18):6457-68 - PubMed
  27. Mol Cell. 2005 Dec 22;20(6):845-54 - PubMed
  28. Epigenetics Chromatin. 2010 Jul 29;3(1):14 - PubMed
  29. Annu Rev Cell Dev Biol. 2005;21:133-53 - PubMed
  30. J Biol Chem. 2004 Oct 15;279(42):43815-20 - PubMed
  31. Biol Res. 2003;36(2):241-51 - PubMed
  32. Curr Biol. 2001 Aug 7;11(15):1183-7 - PubMed
  33. Heredity (Edinb). 2010 Jul;105(1):105-12 - PubMed
  34. Genome Res. 2012 Feb;22(2):307-21 - PubMed
  35. Cell. 2007 May 18;129(4):823-37 - PubMed
  36. Development. 2010 Nov;137(22):3785-94 - PubMed
  37. J Biol Chem. 2005 Apr 8;280(14):13665-70 - PubMed
  38. Nucleic Acids Res. 2001 May 1;29(9):e45 - PubMed
  39. Nat Struct Mol Biol. 2010 Dec;17(12):1500-7 - PubMed
  40. Nature. 1999 Jun 17;399(6737):694-7 - PubMed
  41. Genes Dev. 2005 Feb 1;19(3):295-310 - PubMed
  42. Nucleic Acids Res. 2011 May;39(9):3529-42 - PubMed
  43. Biochemistry. 2006 May 2;45(17):5671-7 - PubMed
  44. Biol Cell. 2006 Aug;98(8):457-63 - PubMed
  45. Mol Cell Biol. 2001 Sep;21(18):6270-9 - PubMed
  46. Methods. 2001 Dec;25(4):402-8 - PubMed
  47. PLoS Genet. 2009 Oct;5(10):e1000687 - PubMed
  48. Mol Cell. 2009 Feb 13;33(3):335-43 - PubMed
  49. BMC Evol Biol. 2009 Feb 04;9:31 - PubMed
  50. Nature. 1997 Sep 18;389(6648):251-60 - PubMed
  51. Biochim Biophys Acta. 2013 Mar-Apr;1819(3-4):290-302 - PubMed
  52. J Exp Zool. 1984 May;230(2):175-86 - PubMed
  53. Nature. 2008 May 15;453(7193):358-62 - PubMed
  54. Trends Biochem Sci. 2005 Dec;30(12):680-7 - PubMed
  55. Cell. 2005 Jan 28;120(2):169-81 - PubMed
  56. PLoS Biol. 2005 Dec;3(12):e384 - PubMed
  57. Mol Cell. 2006 Dec 8;24(5):701-711 - PubMed
  58. Nucleic Acids Res. 1996 Oct 15;24(20):3947-52 - PubMed
  59. Cell Mol Biol Res. 1993;39(7):665-74 - PubMed
  60. Nucleic Acids Res. 1994 Nov 11;22(22):4673-80 - PubMed
  61. Mol Cell. 2008 Jul 11;31(1):57-66 - PubMed
  62. Nat Rev Genet. 2008 Aug;9(8):583-93 - PubMed

Publication Types