Display options
Share it on

Algorithms Mol Biol. 2013 Jul 11;8(1):19. doi: 10.1186/1748-7188-8-19.

MORPH-PRO: a novel algorithm and web server for protein morphing.

Algorithms for molecular biology : AMB

Natalie E Castellana, Andrey Lushnikov, Piotr Rotkiewicz, Natasha Sefcovic, Pavel A Pevzner, Adam Godzik, Kira Vyatkina

Affiliations

  1. Algorithmic Biology Laboratory, Saint Petersburg Academic University, Saint Petersburg, Russia. [email protected].

PMID: 23844614 PMCID: PMC3738870 DOI: 10.1186/1748-7188-8-19

Abstract

BACKGROUND: Proteins are known to be dynamic in nature, changing from one conformation to another while performing vital cellular tasks. It is important to understand these movements in order to better understand protein function. At the same time, experimental techniques provide us with only single snapshots of the whole ensemble of available conformations. Computational protein morphing provides a visualization of a protein structure transitioning from one conformation to another by producing a series of intermediate conformations.

RESULTS: We present a novel, efficient morphing algorithm, Morph-Pro based on linear interpolation. We also show that apart from visualization, morphing can be used to provide plausible intermediate structures. We test this by using the intermediate structures of a c-Jun N-terminal kinase (JNK1) conformational change in a virtual docking experiment. The structures are shown to dock with higher score to known JNK1-binding ligands than structures solved using X-Ray crystallography. This experiment demonstrates the potential applications of the intermediate structures in modeling or virtual screening efforts.

CONCLUSIONS: Visualization of protein conformational changes is important for characterization of protein function. Furthermore, the intermediate structures produced by our algorithm are good approximations to true structures. We believe there is great potential for these computationally predicted structures in protein-ligand docking experiments and virtual screening. The Morph-Pro web server can be accessed at http://morph-pro.bioinf.spbau.ru.

References

  1. Biophys J. 2007 Aug 1;93(3):920-9 - PubMed
  2. PLoS Comput Biol. 2009 Feb;5(2):e1000295 - PubMed
  3. J Mol Biol. 1991 Mar 5;218(1):183-94 - PubMed
  4. J Mol Biol. 2004 Apr 9;337(5):1161-82 - PubMed
  5. Electrophoresis. 1997 Dec;18(15):2714-23 - PubMed
  6. Curr Pharm Des. 2003;9(20):1635-48 - PubMed
  7. Proteins. 2006 Jun 1;63(4):1038-51 - PubMed
  8. Nucleic Acids Res. 2000 Jan 1;28(1):235-42 - PubMed
  9. Bioinformatics. 2010 Oct 15;26(20):2617-9 - PubMed
  10. Nucleic Acids Res. 2003 Jan 1;31(1):478-82 - PubMed
  11. J Mol Biol. 2009 Jan 16;385(2):665-74 - PubMed
  12. J Mol Biol. 1997 Apr 4;267(3):727-48 - PubMed
  13. Nature. 1994 May 19;369(6477):248-51 - PubMed
  14. J Comput Biol. 2003;10(3-4):257-81 - PubMed
  15. Nucleic Acids Res. 2000 Apr 15;28(8):1665-75 - PubMed
  16. J Mol Biol. 1970 Mar;48(3):443-53 - PubMed
  17. J Mol Biol. 1997 Feb 21;266(2):424-40 - PubMed
  18. Bioinformatics. 2003 Oct;19 Suppl 2:ii246-55 - PubMed
  19. Curr Opin Chem Biol. 2002 Aug;6(4):447-52 - PubMed
  20. J Mol Graph Model. 2000 Jun;18(3):247-57, 302-4 - PubMed
  21. Curr Opin Struct Biol. 2004 Feb;14(1):104-9 - PubMed
  22. Structure. 1996 Dec 15;4(12):1395-400 - PubMed
  23. J Comput Biol. 2002;9(2):149-68 - PubMed
  24. J Comput Chem. 2010 May;31(7):1561-3 - PubMed
  25. J Mol Graph Model. 2002 Oct;21(2):151-60 - PubMed
  26. Int J Pept Protein Res. 1975;7(6):445-59 - PubMed
  27. Nat Rev Drug Discov. 2003 Jul;2(7):527-41 - PubMed
  28. J Chem Inf Model. 2010 Apr 26;50(4):511-24 - PubMed
  29. Biophys J. 2002 Sep;83(3):1620-30 - PubMed
  30. Nucleic Acids Res. 2007 Jul;35(Web Server issue):W477-82 - PubMed
  31. Science. 1998 Oct 23;282(5389):740-4 - PubMed

Publication Types