Display options
Share it on

Front Endocrinol (Lausanne). 2013 Jul 12;4:88. doi: 10.3389/fendo.2013.00088. eCollection 2013.

SULT2A1 Gene Copy Number Variation is Associated with Urinary Excretion Rate of Steroid Sulfates.

Frontiers in endocrinology

Jenny Schulze, Maria Johansson, John-Olof Thörngren, Mats Garle, Anders Rane, Lena Ekström

Affiliations

  1. Laboratory Medicine, Division Clinical Pharmacology, Karolinska Institutet , Stockholm , Sweden.

PMID: 23874324 PMCID: PMC3709130 DOI: 10.3389/fendo.2013.00088

Abstract

Human cytosolic sulfotransferases (SULT) 2A1 is the main enzyme involved in the sulfate conjugation of dehydroepiandrosterone, a weak androgen, and the main androgen precursor, whereas estrogens are mainly conjugated by SULT1A1. Here we have identified a copy number variation (CNV) polymorphism in the SULT2A1 gene in a Swedish population including healthy men (N = 30). Moreover, the CNV of SULT1A1 and SULT2A1 was further characterized in relation to urinary levels of androgen sulfate metabolites before and after an intramuscular dose of 500 mg testosterone enanthate. Individuals expressing two or more CNVs excrete 80 and 40% higher levels of DHEAS (p = 0.02) and androsteroneS (p = 0.01), respectively as compared to individuals with one gene copy. The mean area under the urine concentration time-curve from time 0 (prior to the administration of 500 mg testosterone) to 15 days post dose values were 80% higher for DHEAS (p = 0.046) and testosteroneS (p = 0.019) in individuals with two and three SULT2A1 gene copies as compared to individuals with one gene copy. The SULT1A1 CNV on the other hand did not affect the sulfation activity toward the androgens. In conclusion our results indicate that functional CNV polymorphisms in SULT2A1 and SULT1A1 are common in a Swedish population and that SULT2A1 CNV is associated with the urinary concentrations of androgen sulfate metabolites.

Keywords: DHEAS; SULT1A1; SULT2A1; androgens; copy number variation; testosterone

References

  1. Clin Endocrinol (Oxf). 2005 Jun;62(6):644-9 - PubMed
  2. Drug Metab Dispos. 1992 May-Jun;20(3):413-22 - PubMed
  3. Lung Cancer. 2010 Nov;70(2):152-7 - PubMed
  4. J Clin Endocrinol Metab. 2008 Jul;93(7):2500-6 - PubMed
  5. J Clin Endocrinol Metab. 2007 Jul;92(7):2659-64 - PubMed
  6. Eur Urol. 1993;24 Suppl 2:94-105 - PubMed
  7. Drug Metab Dispos. 2009 Feb;37(2):417-23 - PubMed
  8. J Biol Chem. 2012 Aug 24;287(35):29909-20 - PubMed
  9. Eur J Pharmacol. 1995 Jul 1;293(2):173-81 - PubMed
  10. Ann Oncol. 2008 Jan;19(1):56-61 - PubMed
  11. Exp Biol Med (Maywood). 2013 Feb;238(2):163-6 - PubMed
  12. Rapid Commun Mass Spectrom. 2010 Nov 15;24(21):3171-81 - PubMed
  13. Hum Mutat. 2003 Dec;22(6):476-85 - PubMed
  14. N Engl J Med. 1986 Dec 11;315(24):1519-24 - PubMed
  15. Pharmacogenomics. 2012 Jan;13(1):91-111 - PubMed
  16. Hum Mol Genet. 2007 Mar 1;16(5):463-70 - PubMed
  17. Drug Metab Lett. 2012 Jun 1;6(2):109-15 - PubMed
  18. Circulation. 1994 Jan;89(1):89-93 - PubMed
  19. Int J Biochem Cell Biol. 2007;39(4):685-9 - PubMed
  20. Pharmacol Ther. 2007 Dec;116(3):496-526 - PubMed
  21. J Clin Endocrinol Metab. 2011 Nov;96(11):3440-7 - PubMed
  22. Breast Cancer Res Treat. 2013 Feb;137(3):883-92 - PubMed
  23. J Clin Endocrinol Metab. 1997 Aug;82(8):2403-9 - PubMed
  24. Biochem J. 1989 Jun 15;260(3):641-6 - PubMed
  25. Mol Cell Endocrinol. 2005 Feb 28;231(1-2):87-94 - PubMed
  26. J Clin Endocrinol Metab. 2006 Feb;91(2):687-93 - PubMed
  27. Hum Mutat. 2009 Sep;30(9):1310-9 - PubMed

Publication Types