Display options
Share it on

Genome Med. 2013 Jul 30;5(7):66. doi: 10.1186/gm470. eCollection 2013.

Pediatric high-grade astrocytomas: a distinct neuro-oncological paradigm.

Genome medicine

Noha Gerges, Adam M Fontebasso, Steffen Albrecht, Damien Faury, Nada Jabado

Affiliations

  1. Departments of Pediatrics and Human Genetics, McGill University and McGill University Health Centre, Montreal, Quebec, Canada, H3Z2Z3.
  2. Division of Experimental Medicine, McGill University and McGill University Health Centre, Montreal, Quebec, Canada, H3Z2Z3.
  3. Department of Pathology, Montreal Children's Hospital, McGill University Health Centre, Montreal, Quebec, Canada, H3H1P3.
  4. Departments of Pediatrics and Human Genetics, McGill University and McGill University Health Centre, Montreal, Quebec, Canada, H3Z2Z3 ; Division of Experimental Medicine, McGill University and McGill University Health Centre, Montreal, Quebec, Canada, H3Z2Z3.

PMID: 23906214 PMCID: PMC3979088 DOI: 10.1186/gm470

Abstract

Brain tumors are the leading cause of cancer-related death in children. High-grade astrocytomas (HGAs), in particular, are lethal in children across all ages. Integrative genome-wide analyses of the tumor's genome, transcriptome and epigenome, using next-generation sequencing technologies and genome-wide DNA methylation arrays, have provided valuable breakthroughs in our understanding of the pathogenesis of HGAs across all ages. Recent profiling studies have provided insight into the epigenetic nature of gliomas in young adults and HGAs in children, particularly with the identification of recurrent gain-of-function driver mutations in the isocitrate dehydrogenase 1 and 2 genes (IDH1/2) and the epigenetic influence of their oncometabolite 2-hydroxyglutarate, as well as mutations in the histone 3 variant 3 gene (H3F3A) and loss-of-function mutations in the histone 3 lysine 36 trimethyltransferase gene (SETD2). Mutations in H3F3A result in amino acid substitutions at residues thought to directly (K27M) or indirectly (G34R/V) affect histone post-translational modifications, suggesting they have the capacity to affect the epigenome in a profound manner. Here, we review recent genomic studies, and discuss evidence supporting the molecular characterization of pediatric HGAs to complement traditional approaches, such as histology of resected tumors. We also describe newly identified molecular mechanisms and discuss putative therapeutic approaches for HGAs specific to pediatrics, highlighting the necessity for the evolution of HGA disease management approaches.

References

  1. Cell. 2013 May 23;153(5):1064-79 - PubMed
  2. Nature. 2012 Aug 2;488(7409):100-5 - PubMed
  3. Genome Res. 2011 Apr;21(4):505-14 - PubMed
  4. Neuro Oncol. 2012 Nov;14 Suppl 5:v1-49 - PubMed
  5. Brain Pathol. 2013 Sep;23(5):558-64 - PubMed
  6. Nature. 2012 Feb 15;483(7390):474-8 - PubMed
  7. Clin Cancer Res. 2007 Feb 15;13(4):1253-9 - PubMed
  8. J Clin Invest. 2008 May;118(5):1739-49 - PubMed
  9. Genes Dev. 2013 May 1;27(9):985-90 - PubMed
  10. Science. 2012 Nov 23;338(6110):1080-4 - PubMed
  11. Science. 2012 Sep 7;337(6099):1231-5 - PubMed
  12. Cancer Res. 2008 Nov 1;68(21):8673-7 - PubMed
  13. J Neurooncol. 2013 Mar;112(1):67-72 - PubMed
  14. J Clin Oncol. 2007 Oct 20;25(30):4722-9 - PubMed
  15. Br J Cancer. 2009 Aug 18;101(4):722-33 - PubMed
  16. J Neurooncol. 2005 Dec;75(3):267-72 - PubMed
  17. Science. 2013 May 17;340(6134):857-61 - PubMed
  18. J Clin Oncol. 2011 Apr 10;29(11):1408-14 - PubMed
  19. Nat Genet. 2013 Jun;45(6):602-12 - PubMed
  20. Cancer Cell. 2010 Jan 19;17(1):98-110 - PubMed
  21. Cancer Cell. 2010 May 18;17(5):510-22 - PubMed
  22. Nat Rev Cancer. 2012 Dec;12(12):818-34 - PubMed
  23. Proc Natl Acad Sci U S A. 2013 May 14;110(20):8188-93 - PubMed
  24. Acta Neuropathol. 2011 Jun;121(6):763-74 - PubMed
  25. Nat Genet. 2013 Aug;45(8):927-32 - PubMed
  26. J Neuropathol Exp Neurol. 2005 Jun;64(6):479-89 - PubMed
  27. Sci Transl Med. 2012 Jan 11;4(116):116ra4 - PubMed
  28. Cancer Discov. 2013 May;3(5):512-9 - PubMed
  29. Science. 2008 Sep 26;321(5897):1807-12 - PubMed
  30. N Engl J Med. 2005 Mar 10;352(10):997-1003 - PubMed
  31. Sci Transl Med. 2012 Jan 11;4(116):116ps1 - PubMed
  32. Acta Neuropathol. 2012 Nov;124(5):615-25 - PubMed
  33. Acta Neuropathol. 2007 Aug;114(2):97-109 - PubMed
  34. EMBO J. 2008 Jan 23;27(2):406-20 - PubMed
  35. Acta Neuropathol. 2009 Nov;118(5):599-601 - PubMed
  36. PLoS One. 2008 Aug 28;3(8):e3088 - PubMed
  37. Cancer Cell. 2012 Oct 16;22(4):417-8 - PubMed
  38. J Clin Oncol. 2007 Apr 1;25(10):1196-208 - PubMed
  39. Nat Genet. 2012 Jan 29;44(3):251-3 - PubMed
  40. Cancer Cell. 2012 Oct 16;22(4):425-37 - PubMed
  41. Science. 2013 May 3;340(6132):626-30 - PubMed
  42. Eur J Haematol. 2013 Feb;90(2):169-70 - PubMed
  43. Brain Tumor Pathol. 2011 Jul;28(3):177-83 - PubMed
  44. Cancer Cell. 2010 Dec 14;18(6):553-67 - PubMed
  45. Nature. 2012 Aug 2;488(7409):43-8 - PubMed
  46. Cancer Res. 2009 Dec 15;69(24):9157-9 - PubMed
  47. Nat Rev Neurol. 2010 Dec;6(12):695-701 - PubMed
  48. J Clin Oncol. 2009 Dec 1;27(34):5743-50 - PubMed
  49. Clin Cancer Res. 2011 Jul 15;17(14):4650-60 - PubMed
  50. Acta Neuropathol. 2012 Apr;123(4):465-72 - PubMed
  51. Acta Neuropathol. 2011 Mar;121(3):397-405 - PubMed
  52. Clin Cancer Res. 2007 Nov 1;13(21):6284-92 - PubMed
  53. Oncogene. 2014 Apr 17;33(16):2019-26 - PubMed
  54. Neuro Oncol. 2010 Feb;12(2):153-63 - PubMed
  55. Brain Pathol. 2013 Mar;23(2):210-6 - PubMed
  56. Am J Clin Pathol. 2013 Mar;139(3):345-9 - PubMed
  57. Med Sci (Paris). 2012 Oct;28(10):809-12 - PubMed
  58. Oncotarget. 2012 Oct;3(10):1194-203 - PubMed
  59. J Clin Oncol. 2010 Jun 20;28(18):3061-8 - PubMed
  60. Nature. 2012 Aug 30;488(7413):656-9 - PubMed
  61. Cancer Cell. 2011 Jan 18;19(1):17-30 - PubMed
  62. Science. 2011 Jul 22;333(6041):425 - PubMed
  63. Acta Neuropathol. 2012 Sep;124(3):439-47 - PubMed
  64. PLoS One. 2013 Apr 29;8(4):e61512 - PubMed
  65. Science. 2011 Jan 28;331(6016):435-9 - PubMed
  66. Nature. 2008 Oct 23;455(7216):1061-8 - PubMed
  67. Clin Cancer Res. 2011 Dec 15;17(24):7595-604 - PubMed
  68. Nature. 2012 Aug 2;488(7409):106-10 - PubMed
  69. Pediatr Neurosurg. 2005 Nov-Dec;41(6):292-9 - PubMed
  70. Nature. 2012 Jan 29;482(7384):226-31 - PubMed
  71. Cell Mol Life Sci. 2012 Jun;69(11):1799-811 - PubMed
  72. Cancer Cell. 2006 Mar;9(3):157-73 - PubMed
  73. Oncogene. 2009 May 21;28(20):2119-23 - PubMed
  74. Childs Nerv Syst. 2011 Jan;27(1):87-94 - PubMed
  75. N Engl J Med. 2009 Feb 19;360(8):765-73 - PubMed
  76. N Engl J Med. 2005 Nov 10;353(19):2012-24 - PubMed
  77. Cancer Cell. 2011 Aug 16;20(2):143-57 - PubMed
  78. Oncotarget. 2012 Jul;3(7):709-22 - PubMed
  79. Nature. 2010 Dec 23;468(7327):1095-9 - PubMed
  80. N Engl J Med. 2005 Mar 10;352(10):987-96 - PubMed
  81. Proc Natl Acad Sci U S A. 2013 Apr 9;110(15):6021-6 - PubMed
  82. Acta Neuropathol. 2013 May;125(5):659-69 - PubMed
  83. Nature. 2012 Aug 2;488(7409):49-56 - PubMed
  84. Sci Transl Med. 2012 Jan 11;4(116):116ra5 - PubMed
  85. J Clin Oncol. 2010 Nov 10;28(32):4783-9 - PubMed

Publication Types