Display options
Share it on

Saudi Pharm J. 2010 Jul;18(3):137-51. doi: 10.1016/j.jsps.2010.05.007. Epub 2010 May 31.

Comparative study between peripherally and centrally acting sublethal and lethal doses of Leiurus quinquestriatus scorpion venom in rabbits: The usefulness of the sodium channel blocker lidocaine.

Saudi pharmaceutical journal : SPJ : the official publication of the Saudi Pharmaceutical Society

Amal J Fatani

Affiliations

  1. Department of Pharmacology, College of Pharmacy, King Saud University, Saudi Arabia.

PMID: 23964173 PMCID: PMC3731021 DOI: 10.1016/j.jsps.2010.05.007

Abstract

BACKGROUND: Scorpion envenomation is common among desert dwellers, affecting several systems and resulting in multiple organ dysfunction (MOD) or failure (MOF), mainly due to their action on Na(+) channels. Although scorpion venoms toxins do not pass the blood brain barrier, their CNS effects are prominent, occurring in conjunction with, or as an aftermath of peripheral actions of the venom.

OBJECTIVE: To determine the ability of venom of the common scorpion Leiurus quinquestriatus (LQQ) to induce MOD or MOF when injected into rabbits in micro quantities centrally (intracerebroventricularly, i.c.v.) or macro amounts peripherally (s.c. or i.v.). Also, to assess if the Na(+) channel blocker lidocaine can protect rabbits from the resultant manifestations.

METHODS: Rabbits were injected with LQQ venom centrally or peripherally, in either sublethal or lethal doses, and MOD or MOF determined by assessing: cardiac output (CO), estimated hepatic blood flow (EHBF), biochemical parameters indicative of cardiac/hepatic/renal and pancreatic functions, blood pressure (BP), survival, lung/body index (LBI, indicative of pulmonary edema), and/or histological changes in hearts, lungs, livers plus kidneys. In pre-treatment experiments, lidocaine was injected 40 min before venom and protective ability examined.

RESULTS: LQQ venom in sublethal doses caused comparable significant reductions (vs control) in CO and EHBF when injected i.c.v. (2 μg kg(-1)) or s.c. (0.2 mg kg(-1)). Both routes caused gradual dose-related enhanced levels of creatine kinase, lactate dehydrogenase, aspartate aminotransferase, alanine aminotransferase, creatinine, glucose and amylase, indicating MOD. Also, characteristic venom-induced changes in BP were evident after lethal doses of venom i.v. (0.5 mg kg(-1)) or i.c.v. (3 μg kg(-1)). Histological changes in the organs plus LBI were comparable after i.c.v. and i.v. venom injection, with animals ultimately exhibiting MOF. Lidocaine (1 mg kg(-1) i.v., then infusion 50 μg kg(-1) min(-1), 30 min before venom), protected the animals from MOF evoked by lethal doses of the venom (whether injected centrally or peripherally), as evidenced by the amelioration of the venom's effects on blood pressure, LBI, survival and multiple organ histopathological manifestations.

CONCLUSION: LQQ venom, whether injected centrally or peripherally caused comparable systemic dose-dependent MOD or MOF, with the latter attenuated by the Na(+) channel blocker lidocaine, indicating a role for Na(+) channels.

Keywords: Blood pressure; Cardiac output; Estimated hepatic blood flow; Histopathological manifestations; Leiurus quinquestriatus; Lidocaine; Pulmonary index; Scorpion venom

References

  1. Life Sci. 2000;66(3):185-92 - PubMed
  2. Toxicon. 2001 Jun;39(6):781-5 - PubMed
  3. Toxicol Appl Pharmacol. 2007 May 1;220(3):235-42 - PubMed
  4. Toxicon. 2007 Dec 1;50(7):984-92 - PubMed
  5. Med Sci Monit. 2005 Apr;11(4):CR196-202 - PubMed
  6. Acta Neurochir (Wien). 1988;93(1-2):37-44 - PubMed
  7. Toxicon. 2000 Dec;38(12):1787-801 - PubMed
  8. Life Sci. 2003 Jun 6;73(3):319-25 - PubMed
  9. Toxicon. 2010 Apr 1;55(4):773-86 - PubMed
  10. Toxicol Appl Pharmacol. 2003 Feb 15;187(1):58-66 - PubMed
  11. Neurotoxicology. 2009 Jan;30(1):90-6 - PubMed
  12. Toxicon. 2003 Jun;41(8):971-7 - PubMed
  13. Toxicon. 1996 Oct;34(10):1119-25 - PubMed
  14. Toxicon. 1997 Jan;35(1):13-4 - PubMed
  15. Curr Opin Crit Care. 2007 Apr;13(2):207-14 - PubMed
  16. Anal Chem. 1991 Nov 15;63(22):2603-7 - PubMed
  17. J Nat Toxins. 2002 Feb;11(1):1-13 - PubMed
  18. N Engl J Med. 2009 May 14;360(20):2090-8 - PubMed
  19. Eur J Biochem. 2002 Aug;269(16):3920-33 - PubMed
  20. Toxicon. 1992 Oct;30(10):1257-79 - PubMed
  21. J Assoc Physicians India. 2009 Apr;57:301-4 - PubMed
  22. Nat Toxins. 1993;1(5):308-12 - PubMed
  23. Toxicon. 1995 Jul;33(7):825-58 - PubMed
  24. Toxicon. 2009 Sep 15;54(4):471-80 - PubMed
  25. Toxicon. 1994 Dec;32(12):1641-7 - PubMed
  26. Toxicon. 2005 Feb;45(2):187-98 - PubMed
  27. Toxicon. 1977;15(3):225-34 - PubMed
  28. J Med. 1993;24(1):10-27 - PubMed
  29. Toxicon. 2003 Jan;41(1):49-55 - PubMed
  30. Pharmacol Biochem Behav. 1998 May;60(1):7-14 - PubMed
  31. Hum Exp Toxicol. 2009 Nov;28(11):721-8 - PubMed
  32. Toxicon. 1998 Mar;36(3):523-36 - PubMed
  33. Neurosci Lett. 2009 Oct 9;463(3):234-8 - PubMed
  34. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol. 1995 Jun;111(2):183-90 - PubMed
  35. Toxicon. 1993 Feb;31(2):205-12 - PubMed
  36. Toxicon. 1999 May;37(5):771-82 - PubMed

Publication Types