Display options
Share it on

Front Psychol. 2013 Aug 12;4:493. doi: 10.3389/fpsyg.2013.00493. eCollection 2013.

fMRI orientation decoding in V1 does not require global maps or globally coherent orientation stimuli.

Frontiers in psychology

Arjen Alink, Alexandra Krugliak, Alexander Walther, Nikolaus Kriegeskorte

Affiliations

  1. Medical Research Council, Cognition and Brain Sciences Unit Cambridge, UK.

PMID: 23964251 PMCID: PMC3740242 DOI: 10.3389/fpsyg.2013.00493

Abstract

The orientation of a large grating can be decoded from V1 functional magnetic resonance imaging (fMRI) data, even at low resolution (3-mm isotropic voxels). This finding has suggested that columnar-level neuronal information might be accessible to fMRI at 3T. However, orientation decodability might alternatively arise from global orientation-preference maps. Such global maps across V1 could result from bottom-up processing, if the preferences of V1 neurons were biased toward particular orientations (e.g., radial from fixation, or cardinal, i.e., vertical or horizontal). Global maps could also arise from local recurrent or top-down processing, reflecting pre-attentive perceptual grouping, attention spreading, or predictive coding of global form. Here we investigate whether fMRI orientation decoding with 2-mm voxels requires (a) globally coherent orientation stimuli and/or (b) global-scale patterns of V1 activity. We used opposite-orientation gratings (balanced about the cardinal orientations) and spirals (balanced about the radial orientation), along with novel patch-swapped variants of these stimuli. The two stimuli of a patch-swapped pair have opposite orientations everywhere (like their globally coherent parent stimuli). However, the two stimuli appear globally similar, a patchwork of opposite orientations. We find that all stimulus pairs are robustly decodable, demonstrating that fMRI orientation decoding does not require globally coherent orientation stimuli. Furthermore, decoding remained robust after spatial high-pass filtering for all stimuli, showing that fine-grained components of the fMRI patterns reflect visual orientations. Consistent with previous studies, we found evidence for global radial and vertical preference maps in V1. However, these were weak or absent for patch-swapped stimuli, suggesting that global preference maps depend on globally coherent orientations and might arise through recurrent or top-down processes related to the perception of global form.

Keywords: decoding; fMRI; global form; hyperacuity; orientation selectivity; pattern analysis; radial bias; visual cortex

References

  1. J Neurophysiol. 2008 May;99(5):2456-69 - PubMed
  2. Science. 1995 May 12;268(5212):889-93 - PubMed
  3. J Vis. 2008 Aug 01;8(10):5.1-13 - PubMed
  4. Neuroimage. 2010 Feb 1;49(3):1965-76 - PubMed
  5. Neuroimage. 2010 Feb 1;49(3):1943-8 - PubMed
  6. Neuroimage. 2010 Aug 15;52(2):600-5 - PubMed
  7. Neuroimage. 2010 Feb 1;49(3):1957-64 - PubMed
  8. Soc Cogn Affect Neurosci. 2009 Mar;4(1):101-9 - PubMed
  9. Neuron. 2002 Nov 14;36(4):739-50 - PubMed
  10. Nat Neurosci. 2005 May;8(5):686-91 - PubMed
  11. Nat Neurosci. 2000 Jun;3(6):535-6 - PubMed
  12. Neuroimage. 2005 Nov 1;28(2):440-52 - PubMed
  13. J Neurosci. 2011 Mar 30;31(13):4792-804 - PubMed
  14. Neuroimage. 2012 Nov 15;63(3):1212-22 - PubMed
  15. Nat Neurosci. 2002 Dec;5(12):1332-8 - PubMed
  16. J Neurosci. 1996 Jul 1;16(13):4207-21 - PubMed
  17. Nat Neurosci. 2011 Sep 18;14(10):1243-4 - PubMed
  18. Nat Neurosci. 2005 May;8(5):679-85 - PubMed
  19. Front Psychol. 2012 Jul 25;3:245 - PubMed
  20. Cereb Cortex. 2010 Aug;20(8):1946-54 - PubMed
  21. J Neurosci. 2010 Jan 6;30(1):325-30 - PubMed
  22. Neuroimage. 2010 Feb 1;49(3):1949-52 - PubMed
  23. Proc Natl Acad Sci U S A. 2008 Jul 29;105(30):10607-12 - PubMed
  24. Exp Brain Res. 1997 Sep;116(2):216-28 - PubMed
  25. Neuron. 2006 Sep 7;51(5):661-70 - PubMed
  26. Proc Natl Acad Sci U S A. 1996 Jan 23;93(2):615-22 - PubMed
  27. Neuroimage. 2010 Apr 1;50(2):567-71 - PubMed
  28. J Neurophysiol. 2010 Jun;103(6):3465-71 - PubMed
  29. Neuroimage. 2010 Feb 1;49(3):1953-6 - PubMed
  30. Neuroimage. 2009 Jun;46(2):511-5 - PubMed

Publication Types

Grant support