Display options
Share it on

Int J Mol Imaging. 2013;2013:983534. doi: 10.1155/2013/983534. Epub 2013 Jul 02.

Evaluation of Nonradiative Clinical Imaging Techniques for the Longitudinal Assessment of Tumour Growth in Murine CT26 Colon Carcinoma.

International journal of molecular imaging

Johanne Seguin, Bich-Thuy Doan, Heldmuth Latorre Ossa, Lauriane Jugé, Jean-Luc Gennisson, Mickaël Tanter, Daniel Scherman, Guy G Chabot, Nathalie Mignet

Affiliations

  1. Chemical, Genetic and Imaging Pharmacology Laboratory, Faculty of Pharmacy, Chimie ParisTech, Paris Descartes University, Sorbonne Paris Cité, INSERM U1022, CNRS UMR8151, 4 Avenue de l'Observatoire, 75006 Paris, France.

PMID: 23936648 PMCID: PMC3713650 DOI: 10.1155/2013/983534

Abstract

Background and Objectives. To determine the most appropriate technique for tumour followup in experimental therapeutics, we compared ultrasound (US) and magnetic resonance imaging (MRI) to characterize ectopic and orthotopic colon carcinoma models. Methods. CT26 tumours were implanted subcutaneously (s.c.) in Balb/c mice for the ectopic model or into the caecum for the orthotopic model. Tumours were evaluated by histology, spectrofluorescence, MRI, and US. Results. Histology of CT26 tumour showed homogeneously dispersed cancer cells and blood vessels. The visualization of the vascular network using labelled albumin showed that CT26 tumours were highly vascularized and disorganized. MRI allowed high-resolution and accurate 3D tumour measurements and provided additional anatomical and functional information. Noninvasive US imaging allowed good delineation of tumours despite an hypoechogenic signal. Monitoring of tumour growth with US could be accomplished as early as 5 days after implantation with a shorter acquisition time (<5 min) compared to MRI. Conclusion. MRI and US afforded excellent noninvasive imaging techniques to accurately follow tumour growth of ectopic and orthotopic CT26 tumours. These two techniques can be appropriately used for tumour treatment followup, with a preference for US imaging, due to its short acquisition time and simplicity of use.

References

  1. Exp Ther Med. 2012 Jul;4(1):61-64 - PubMed
  2. Cancer Res. 1986 Apr;46(4 Pt 2):1928-33 - PubMed
  3. Eur Radiol. 2012 Oct;22(10):2169-77 - PubMed
  4. Eur Radiol. 2012 May;22(5):1023-32 - PubMed
  5. Neoplasia. 2007 Feb;9(2):128-35 - PubMed
  6. Cancer Res. 2002 Nov 15;62(22):6371-5 - PubMed
  7. Cancer Gene Ther. 2002 Feb;9(2):142-8 - PubMed
  8. Int J Colorectal Dis. 2002 Nov;17(6):388-95 - PubMed
  9. Expert Opin Biol Ther. 2003 Oct;3(7):1163-72 - PubMed
  10. Cancer Res. 1975 Sep;35(9):2434-9 - PubMed
  11. Radiology. 2012 Feb;262(2):435-49 - PubMed
  12. Cancer Res. 1987 Mar 1;47(5):1398-406 - PubMed
  13. NMR Biomed. 2006 Apr;19(2):173-9 - PubMed
  14. Proc Natl Acad Sci U S A. 1991 Oct 15;88(20):9345-9 - PubMed
  15. Surg Oncol. 1992 Jun;1(3):251-6 - PubMed
  16. J Vis Exp. 2007;(10):484 - PubMed
  17. Neoplasia. 2006 Jul;8(7):534-42 - PubMed
  18. Magn Reson Med. 1990 Jul;15(1):121-7 - PubMed
  19. Cancer Res. 1988 May 15;48(10):2641-58 - PubMed
  20. J Magn Reson Imaging. 2004 Jul;20(1):138-44 - PubMed
  21. Int J Radiat Oncol Biol Phys. 2008 Nov 15;72(4):1198-207 - PubMed
  22. CA Cancer J Clin. 2011 Mar-Apr;61(2):69-90 - PubMed
  23. Am J Pathol. 1996 Apr;148(4):1181-91 - PubMed
  24. J Pathol. 2005 Jan;205(2):194-205 - PubMed
  25. Cell Oncol. 2006;28(4):127-39 - PubMed
  26. Ultrasound Med Biol. 2005 Jun;31(6):865-70 - PubMed
  27. Nat Methods. 2011 Jul 03;8(8):662-4 - PubMed
  28. Cancer Biol Ther. 2008 Apr;7(4):502-9 - PubMed
  29. Neoplasia. 2006 Jul;8(7):587-95 - PubMed
  30. Tumour Biol. 2012 Oct;33(5):1709-17 - PubMed
  31. Dig Surg. 2005;22(1-2):16-25 - PubMed
  32. Cancer Res. 1980 Jul;40(7):2142-6 - PubMed
  33. J Magn Reson Imaging. 2005 Jun;21(6):701-8 - PubMed
  34. In Vivo. 1996 Sep-Oct;10(5):463-9 - PubMed
  35. Invest Radiol. 2009 Sep;44(9):572-6 - PubMed
  36. J Cell Biochem. 1994 Sep;56(1):4-8 - PubMed
  37. Radiology. 2012 Aug;264(2):436-44 - PubMed

Publication Types