Display options
Share it on

J Phys Chem A. 2013 Sep 05;117(35):8343-51. doi: 10.1021/jp405724a. Epub 2013 Aug 20.

Reaction of dimethyl ether with hydroxyl radicals: kinetic isotope effect and prereactive complex formation.

The journal of physical chemistry. A

Cornelie Bänsch, Johannes Kiecherer, Milan Szöri, Matthias Olzmann

Affiliations

  1. Institut für Physikalische Chemie, Karlsruher Institut für Technologie, Kaiserstr. 12, 76131 Karlsruhe, Germany.

PMID: 23914942 DOI: 10.1021/jp405724a

Abstract

The kinetic isotope effect of the reactions OH + CH3OCH3 (DME) and OH + CD3OCD3 (DME-d6) was experimentally and theoretically studied. Experiments were carried out in a slow-flow reactor at pressures between 5 and 21 bar (helium as bath gas) with production of OH by laser flash photolysis of HNO3 and time-resolved detection of OH by laser-induced fluorescence. The temperature dependences of the rate coefficients obtained can be described by the following modified Arrhenius expressions: k(OH+DME) = (4.5 ± 1.3) × 10(-16) (T/K)(1.48) exp(66.6 K/T) cm(3) s(-1) (T = 292-650 K, P = 5.9-20.9 bar) and k(OH+DME-d6) = (7.3 ± 2.2) × 10(-23) (T/K)(3.57) exp(759.8 K/T) cm(3) s(-1) (T = 387-554 K, P = 13.0-20.4 bar). A pressure dependence of the rate coefficients was not observed. The agreement of our experimental results for k(OH+DME) with values from other authors is very good, and from a fit to all available literature data, we derived the following modified Arrhenius expression, which reproduces the values obtained in the temperature range T = 230-1500 K at pressures between 30 mbar and 21 bar to better than within ±20%: k(OH+DME) = 8.45 × 10(-18) (T/K)(2.07) exp(262.2 K/T) cm(3) s(-1). For k(OH+DME-d6), to the best of our knowledge, this is the first experimental study. For the analysis of the reaction pathway and the kinetic isotope effect, potential energy diagrams were calculated by using three different quantum chemical methods: (I) CCSD(T)/cc-pV(T,Q)Z//MP2/6-311G(d,p), (II) CCSD(T)/cc-pV(T,Q)Z//CCSD/cc-pVDZ, and (III) CBS-QB3. In all three cases, the reaction is predicted to proceed via a prereaction OH-ether complex with subsequent intramolecular hydrogen abstraction and dissociation to give the methoxymethyl radical and water. Overall rate coefficients were calculated by assuming a thermal equilibrium between the reactants and the prereaction complex and by calculating the rate coefficients of the hydrogen abstraction step from canonical transition state theory. The results based on the molecular data from methods (I) and (II) showed a satisfactory agreement with the experimental values, which indicates that the pre-equilibrium assumption is reasonable under our conditions. In the case of method (III), the isotope effect was significantly underpredicted. The reason for this discrepancy was identified in a fundamentally differing reaction coordinate. Obviously, the B3LYP functional applied in method (III) for geometry and frequency calculations is inadequate to describe such systems, which is in line with earlier findings of other authors.

Publication Types