Display options
Share it on

J Mech Phys Solids. 2013 Sep 01;61(9):1955-1969. doi: 10.1016/j.jmps.2013.04.005.

On the effect of prestrain and residual stress in thin biological membranes.

Journal of the mechanics and physics of solids

Manuel K Rausch, Ellen Kuhl

Affiliations

  1. Department of Mechanical Engineering, Stanford, California, USA.

PMID: 23976792 PMCID: PMC3747014 DOI: 10.1016/j.jmps.2013.04.005

Abstract

Understanding the difference between ex vivo and in vivo measurements is critical to interpret the load carrying mechanisms of living biological systems. For the past four decades, the ex vivo stiffness of thin biological membranes has been characterized using uniaxial and biaxial tests with remarkably consistent stiffness parameters, even across different species. Recently, the in vivo stiffness was characterized using combined imaging techniques and inverse finite element analyses. Surprisingly, ex vivo and in vivo stiffness values differed by up to three orders of magnitude. Here, for the first time, we explain this tremendous discrepancy using the concept of prestrain. We illustrate the mathematical modeling of prestrain in nonlinear continuum mechanics through the multiplicative decomposition of the total elastic deformation into prestrain-induced and load-induced parts. Using in vivo measured membrane kinematics and associated pressure recordings, we perform an inverse finite element analysis for different prestrain levels and show that the resulting membrane stiffness may indeed differ by four orders of magnitude depending on the prestrain level. Our study motivates the hypothesis that prestrain is important to position thin biological membranes in vivo into their optimal operating range, right at the transition point of the stiffening regime. Understanding the effect of prestrain has direct clinical implications in regenerative medicine, medical device design, and and tissue engineering of replacement constructs for thin biological membranes.

Keywords: finite element method; mitral leaflet; parameter identification; prestrain; residual strain; residual stress

References

  1. Philos Trans R Soc Lond B Biol Sci. 2007 Aug 29;362(1484):1369-91 - PubMed
  2. J Biomech Eng. 1992 Nov;114(4):461-6 - PubMed
  3. J Biomech Eng. 2004 Apr;126(2):276-83 - PubMed
  4. Circ Res. 1990 Jan;66(1):37-45 - PubMed
  5. Circ Res. 1989 Nov;65(5):1340-9 - PubMed
  6. Biomech Model Mechanobiol. 2009 Dec;8(6):431-46 - PubMed
  7. J Thorac Cardiovasc Surg. 2005 Sep;130(3):783-90 - PubMed
  8. Acta Biomater. 2006 Nov;2(6):609-18 - PubMed
  9. Circulation. 2010 Oct 26;122(17):1683-9 - PubMed
  10. J Mech Behav Biomed Mater. 2012 Nov;15:208-17 - PubMed
  11. J Thorac Cardiovasc Surg. 2007 Dec;134(6):1562-8 - PubMed
  12. J Biomech. 2009 Aug 25;42(12):1909-16 - PubMed
  13. J Mech Phys Solids. 2011 Oct 1;59(10):2177-2190 - PubMed
  14. Biomech Model Mechanobiol. 2011 Feb;10(1):11-26 - PubMed
  15. Med Biol Eng. 1973 Nov;11(6):691-702 - PubMed
  16. Biomech Model Mechanobiol. 2007 Sep;6(5):303-20 - PubMed
  17. Am J Physiol Heart Circ Physiol. 2008 Sep;295(3):H1141-H1149 - PubMed
  18. J Mech Phys Solids. 2011 Apr 1;59(4):863-883 - PubMed
  19. Am J Physiol Heart Circ Physiol. 2009 Jun;296(6):H1766-73 - PubMed
  20. J Thorac Cardiovasc Surg. 1973 Aug;66(2):202-8 - PubMed
  21. Biomech Model Mechanobiol. 2013 Oct;12(5):1053-71 - PubMed
  22. J Biomech Eng. 2005 Jun;127(3):504-11 - PubMed
  23. J Biomech. 2009 Dec 11;42(16):2697-701 - PubMed
  24. Am J Physiol. 1995 Oct;269(4 Pt 2):H1319-27 - PubMed
  25. Ann Thorac Surg. 2006 Oct;82(4):1369-77 - PubMed
  26. J Biomech. 2011 Apr 7;44(6):1149-57 - PubMed
  27. J Biomech Eng. 2001 Dec;123(6):528-35 - PubMed
  28. Biomech Model Mechanobiol. 2013 Jan;12(1):123-36 - PubMed
  29. Ann Biomed Eng. 1991;19(3):237-49 - PubMed
  30. J Card Surg. 1992 Mar;7(1):71-8 - PubMed
  31. J Biomech Eng. 1998 Feb;120(1):38-47 - PubMed
  32. Circulation. 2011 Sep 13;124(11 Suppl):S81-96 - PubMed
  33. ASAIO Trans. 1991 Jul-Sep;37(3):M447-8 - PubMed
  34. Ann Biomed Eng. 2011 Jun;39(6):1690-702 - PubMed
  35. Ann Biomed Eng. 2012 Mar;40(3):750-61 - PubMed
  36. Ann Biomed Eng. 2006 Feb;34(2):315-25 - PubMed
  37. Biomech Model Mechanobiol. 2009 Feb;8(1):43-55 - PubMed
  38. Ann Biomed Eng. 2005 Dec;33(12):1778-88 - PubMed
  39. Circulation. 2012 Sep 11;126(11 Suppl 1):S231-8 - PubMed
  40. Biomech Model Mechanobiol. 2010 Jun;9(3):281-93 - PubMed
  41. Ann Biomed Eng. 2012 Jul;40(7):1455-67 - PubMed

Publication Types

Grant support