Display options
Share it on

Am J Nucl Med Mol Imaging. 2013 Sep 19;3(5):397-407. eCollection 2013.

A comparison of PET imaging agents for the assessment of therapy efficacy in a rodent model of glioma.

American journal of nuclear medicine and molecular imaging

Shehzahdi S Moonshi, Romain Bejot, Zeenat Atcha, Vimalan Vijayaragavan, Kishore K Bhakoo, Julian L Goggi

Affiliations

  1. Singapore Bioimaging Consortium (ASTAR) Helios, 02-02, 11 Biopolis Way, 138667 Singapore.

PMID: 24116348 PMCID: PMC3784803

Abstract

The aim of the current study was to assess the ability of PET imaging agents to detect early response to therapy in an orthotopic experimental rodent model of glioma. Clinically, MRI and [(18)F]FDG PET are routinely used but their ability to assess early therapeutic response can be limited. In this study, nude rats were implanted with U87-MG tumors orthotopically and imaged with either [(18)F]FDG or [(18)F]FLT to determine which tracer acts as the most sensitive biomarker for evaluation of treatment response in animals undergoing anti-angiogenic therapy with sunitinib, a receptor tyrosine kinase (RTK) inhibitor. Of the radiopharmaceuticals tested, [(18)F]FLT proved to be the most sensitive biomarker in the proliferating glioma, based on tumour-to-normal tissue radiotracer uptake (TNR ~17) in comparison to [(18)F]FDG (TNR ~1.7). Furthermore, [(18)F]FLT displayed earlier assessment of therapy efficacy, than either tumour volume measured by MRI or [(18)F]FDG PET imaging. Overall, longitudinal molecular imaging with [(18)F]FLT provides earlier detection of therapy response than either of the commonly used clinical imaging modalities potentially improving patient management.

Keywords: PET; [18F]FDG; [18F]FLT; angiogenesis; glioma; orthotopic; sunitinib

References

  1. Neuroimaging Clin N Am. 2002 Nov;12(4):615-26 - PubMed
  2. J Neurooncol. 2011 Dec;105(3):621-7 - PubMed
  3. J Nucl Med. 2006 Oct;47(10):1612-21 - PubMed
  4. J Nucl Med. 2004 Apr;45(4):695-700 - PubMed
  5. Neuro Oncol. 2012 May;14(5):649-57 - PubMed
  6. J Biomed Biotechnol. 2012;2012:205818 - PubMed
  7. Cancer Sci. 2011 Nov;102(11):1949-57 - PubMed
  8. Expert Opin Investig Drugs. 2009 Jun;18(6):821-34 - PubMed
  9. Anticancer Res. 2010 Dec;30(12):4987-92 - PubMed
  10. BJU Int. 2012 May;109(9):1349-54 - PubMed
  11. J Neurooncol. 2011 Jul;103(3):491-501 - PubMed
  12. J Nucl Med. 2008 Mar;49(3):422-9 - PubMed
  13. Clin Nucl Med. 2006 Dec;31(12):774-80 - PubMed
  14. J Clin Oncol. 2009 May 20;27(15):2542-52 - PubMed
  15. Neuro Oncol. 2010 Aug;12(8):804-14 - PubMed
  16. J Nucl Med. 2012 Jan;53(1):29-36 - PubMed
  17. Neuro Oncol. 2012 Aug;14(8):1079-89 - PubMed
  18. Nucl Med Biol. 2011 Jul;38(5):645-51 - PubMed
  19. J Nucl Med. 2005 Jun;46(6):945-52 - PubMed
  20. Eur J Nucl Med Mol Imaging. 2009 Dec;36(12):1960-7 - PubMed
  21. Neuro Oncol. 2013 Jan;15(1):41-56 - PubMed
  22. Clin Cancer Res. 2011 Dec 15;17(24):7634-44 - PubMed
  23. J Nucl Med. 2012 Jul;53(7):1135-45 - PubMed
  24. J Neurooncol. 1997 May;32(3):253-65 - PubMed
  25. Q J Nucl Med Mol Imaging. 2012 Apr;56(2):173-90 - PubMed
  26. Neuro Oncol. 2007 Oct;9(4):412-23 - PubMed
  27. Clin Ter. 2011;162(3):251-7 - PubMed
  28. J Pathol. 2011 Apr;223(5):626-34 - PubMed
  29. J Nucl Med. 2010 May;51(5):713-9 - PubMed
  30. J Nucl Med. 2011 Mar;52(3):424-30 - PubMed
  31. Nucl Med Biol. 2011 Aug;38(6):781-93 - PubMed
  32. Cancer Res. 2005 May 15;65(10):4389-400 - PubMed
  33. Nucl Med Biol. 2012 Oct;39(7):977-81 - PubMed
  34. J Neurol Neurosurg Psychiatry. 1995 Feb;58(2):250-2 - PubMed
  35. Nucl Med Biol. 2002 Apr;29(3):281-7 - PubMed
  36. Clin Cancer Res. 2009 Oct 1;15(19):6062-9 - PubMed
  37. J Nucl Med. 1995 Feb;36(2):297-306 - PubMed

Publication Types