Display options
Share it on

Front Oncol. 2013 Sep 17;3:243. doi: 10.3389/fonc.2013.00243.

Endogenous retroviruses as targets for antitumor immunity in renal cell cancer and other tumors.

Frontiers in oncology

Elena Cherkasova, Quinn Weisman, Richard W Childs

Affiliations

  1. Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health , Bethesda, MD , USA.

PMID: 24062992 PMCID: PMC3775266 DOI: 10.3389/fonc.2013.00243

Abstract

Human endogenous retroviruses (HERVs), remnants of ancient germ-line infections with exogenous retroviruses, are estimated to comprise up to 8% of human genome. Most HERVs have accumulated mutations and deletions that prevent their expression as an infectious virus. Nevertheless, a growing number of HERV genes and proteins have been found to be expressed in different cancers, raising the possibility that HERV-derived antigens might represent excellent targets for tumor immunotherapy. Here, we review data showing HERV-encoded antigens are capable of eliciting humoral and T-cells specific antitumor immunity. We also describe a novel HERV-E that was recently found to be selectively expressed in over 80% of clear cell kidney cancer but not in normal tissues. Remarkably, the restricted expression of HERV-E in kidney tumors was found to occur as a consequence of inactivation of the von Hippel-Lindau tumor suppressor. Importantly, antigens derived from this provirus are immunogenic, stimulating cytotoxic T-cells that kill kidney cancer cells in vitro and in vivo. Taken altogether, these data suggest efforts aimed at boosting human immunity against HERV-derived antigens could be used as a strategy to treat advanced tumors including kidney cancer.

Keywords: antigen; cancer treatment; cytotoxic T-cells; human endogenous retroviruses; immunotherapy

References

  1. N Engl J Med. 2000 Sep 14;343(11):750-8 - PubMed
  2. J Gen Virol. 1999 Apr;80 ( Pt 4):841-845 - PubMed
  3. Int J Cancer. 2007 Oct 1;121(7):1417-23 - PubMed
  4. Mol Cancer. 2004 Apr 26;3:12 - PubMed
  5. J Virol. 1996 Jan;70(1):188-98 - PubMed
  6. Neoplasia. 2008 Jun;10(6):521-33 - PubMed
  7. Cancer Res. 2005 May 15;65(10):4172-80 - PubMed
  8. J Clin Invest. 2008 Mar;118(3):1099-109 - PubMed
  9. Blood. 2009 Jul 16;114(3):535-46 - PubMed
  10. Genes Chromosomes Cancer. 2010 May;49(5):401-11 - PubMed
  11. Nat Genet. 1998 Oct;20(2):116-7 - PubMed
  12. J Virol. 2011 Apr;85(7):3436-48 - PubMed
  13. Cancer Res. 2006 Feb 1;66(3):1658-63 - PubMed
  14. Neoplasia. 2011 Nov;13(11):1081-92 - PubMed
  15. J Transl Med. 2012 Mar 15;10:48 - PubMed
  16. J Virol. 2005 Jan;79(2):876-83 - PubMed
  17. Nat Genet. 1999 Mar;21(3):257-8 - PubMed
  18. Oncogene. 2011 Nov 24;30(47):4697-706 - PubMed
  19. Exp Cell Res. 2009 Mar 10;315(5):849-62 - PubMed
  20. Genomics. 2001 Mar 15;72(3):314-20 - PubMed
  21. J Virol. 1999 Feb;73(2):1254-61 - PubMed
  22. Int J Cancer. 2007 Jan 1;120(1):81-90 - PubMed
  23. Blood. 2002 Jun 1;99(11):4234-6 - PubMed
  24. Cancer Res. 1996 Oct 1;56(19):4362-5 - PubMed
  25. Differentiation. 2009 Dec;78(5):283-91 - PubMed
  26. Cancer Immunol Immunother. 2012 Jul;61(7):1093-100 - PubMed
  27. Oncogene. 2003 Mar 13;22(10):1528-35 - PubMed
  28. AIDS Res Hum Retroviruses. 2008 May;24(5):717-23 - PubMed
  29. J Natl Cancer Inst. 2012 Feb 8;104(3):189-210 - PubMed
  30. Cancer. 2009 May 15;115(10 Suppl):2262-72 - PubMed
  31. AIDS Res Hum Retroviruses. 2006 Jan;22(1):52-6 - PubMed
  32. J Gen Virol. 1996 Dec;77 ( Pt 12):2983-90 - PubMed
  33. Curr Biol. 1999 Aug 26;9(16):861-8 - PubMed
  34. Cancer Res. 2008 Jul 15;68(14):5869-77 - PubMed
  35. Science. 2006 Oct 6;314(5796):126-9 - PubMed
  36. J Virol. 1995 Jan;69(1):414-21 - PubMed
  37. Genes Cancer. 2011 Sep;2(9):914-22 - PubMed
  38. Cancer Res. 2003 Dec 15;63(24):8735-41 - PubMed
  39. Gene. 2009 Dec 15;448(2):151-67 - PubMed
  40. J Med Genet. 2001 May;38(5):285-303 - PubMed
  41. Cancer. 2003 Jul 1;98(1):187-97 - PubMed
  42. Cancer Res. 2002 Oct 1;62(19):5510-6 - PubMed

Publication Types