Display options
Share it on

Front Microbiol. 2013 Oct 02;4:284. doi: 10.3389/fmicb.2013.00284.

Bacillus cereus cell response upon exposure to acid environment: toward the identification of potential biomarkers.

Frontiers in microbiology

Noémie Desriac, Véronique Broussolle, Florence Postollec, Anne-Gabrielle Mathot, Danièle Sohier, Louis Coroller, Ivan Leguerinel

Affiliations

  1. ADRIA Développement, UMT 08.3 PHYSI'Opt, Quimper France ; EA3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, UMT 08.3 PHYSI'Opt, IFR148 ScInBioS, Université de Brest Quimper, France.

PMID: 24106490 PMCID: PMC3788345 DOI: 10.3389/fmicb.2013.00284

Abstract

Microorganisms are able to adapt to different environments and evolve rapidly, allowing them to cope with their new environments. Such adaptive response and associated protections toward other lethal stresses, is a crucial survival strategy for a wide spectrum of microorganisms, including food spoilage bacteria, pathogens, and organisms used in functional food applications. The growing demand for minimal processed food yields to an increasing use of combination of hurdles or mild preservation factors in the food industry. A commonly used hurdle is low pH which allows the decrease in bacterial growth rate but also the inactivation of pathogens or spoilage microorganisms. Bacillus cereus is a well-known food-borne pathogen leading to economical and safety issues in food industry. Because survival mechanisms implemented will allow bacteria to cope with environmental changes, it is important to provide understanding of B. cereus stress response. Thus this review deals with the adaptive traits of B. cereus cells facing to acid stress conditions. The acid stress response of B. cereus could be divided into four groups (i) general stress response (ii) pH homeostasis, (iii) metabolic modifications and alkali production and (iv) secondary oxidative stress response. This current knowledge may be useful to understand how B. cereus cells may cope to acid environment such as encountered in food products and thus to find some molecular biomarkers of the bacterial behavior. These biomarkers could be furthermore used to develop new microbial behavior prediction tools which can provide insights into underlying molecular physiological states which govern the behavior of microorganisms and thus opening the avenue toward the detection of stress adaptive behavior at an early stage and the control of stress-induced resistance throughout the food chain.

Keywords: Bacillus cereus; acid stress response; general stress response; metabolic rearrangement; oxidative stress response; pH homeostasis

References

  1. J Appl Microbiol. 2008 May;104(5):1283-93 - PubMed
  2. Curr Opin Biotechnol. 2003 Oct;14(5):491-6 - PubMed
  3. BMC Genomics. 2008 Dec 06;9:590 - PubMed
  4. Microbiol Rev. 1989 Mar;53(1):85-108 - PubMed
  5. Microbiol Rev. 1986 Sep;50(3):314-52 - PubMed
  6. Int J Food Microbiol. 1995 Dec;28(2):145-55 - PubMed
  7. Food Microbiol. 2007 Oct-Dec;24(7-8):671-7 - PubMed
  8. Curr Microbiol. 2004 Jan;48(1):39-46 - PubMed
  9. Annu Rev Microbiol. 2003;57:395-418 - PubMed
  10. Appl Environ Microbiol. 2008 Apr;74(8):2370-8 - PubMed
  11. Biochem J. 1983 Sep 15;214(3):657-63 - PubMed
  12. Infect Immun. 1991 Jul;59(7):2470-5 - PubMed
  13. Appl Environ Microbiol. 2010 Jun;76(11):3529-37 - PubMed
  14. J Clin Microbiol. 2005 Aug;43(8):4277-9 - PubMed
  15. Int J Food Microbiol. 2013 Oct 1;167(1):80-6 - PubMed
  16. Appl Microbiol Biotechnol. 2006 Apr;70(3):261-72 - PubMed
  17. Int J Food Microbiol. 2002 Nov 15;79(1-2):17-26 - PubMed
  18. Microbiology (Reading). 2011 Jan;157(Pt 1):3-12 - PubMed
  19. Mol Microbiol. 2008 May;68(3):786-99 - PubMed
  20. Environ Microbiol. 2008 Apr;10(4):851-65 - PubMed
  21. Int J Food Microbiol. 2007 May 10;116(2):292-6 - PubMed
  22. Environ Microbiol. 2010 Apr;12(4):873-85 - PubMed
  23. Infect Immun. 2001 Dec;69(12):7858-65 - PubMed
  24. J Bacteriol. 2005 Dec;187(23):8006-19 - PubMed
  25. Clin Pharmacol Ther. 2001 Mar;69(3):89-95 - PubMed
  26. Appl Environ Microbiol. 2010 May;76(10):3352-60 - PubMed
  27. Appl Environ Microbiol. 2013 Jan;79(1):74-80 - PubMed
  28. Eur J Biochem. 1975 Nov 15;59(2):377-86 - PubMed
  29. Eur J Biochem. 1999 Jan;259(1-2):262-8 - PubMed
  30. J Bacteriol. 2004 Jul;186(13):4085-99 - PubMed
  31. Int J Food Microbiol. 2010 Jan 1;136(3):318-25 - PubMed
  32. Appl Environ Microbiol. 2001 Aug;67(8):3396-405 - PubMed
  33. Nucleic Acids Res. 2004 Feb 11;32(3):977-88 - PubMed
  34. Food Microbiol. 2011 May;28(3):364-72 - PubMed
  35. J Biol Chem. 1968 Apr 25;243(8):1671-7 - PubMed
  36. Pediatrics. 2010 Apr;125(4):e951-5 - PubMed
  37. BMC Genomics. 2012 Oct 22;13:564 - PubMed
  38. Food Microbiol. 2012 Oct;32(1):172-8 - PubMed
  39. Appl Environ Microbiol. 2013 Jan;79(1):57-62 - PubMed
  40. J Bacteriol. 2007 Mar;189(6):2249-61 - PubMed
  41. Microbes Infect. 2000 Feb;2(2):189-98 - PubMed
  42. J Bacteriol. 2007 Jun;189(12):4384-90 - PubMed
  43. J Bacteriol. 2003 Oct;185(19):5722-34 - PubMed
  44. Biochem J. 1967 Dec;105(3):1147-62 - PubMed
  45. J Bacteriol. 2006 Feb;188(3):1103-12 - PubMed
  46. Novartis Found Symp. 1999;221:167-79; discussion 179-82 - PubMed
  47. Nat Rev Mol Cell Biol. 2001 Sep;2(9):669-77 - PubMed
  48. Appl Environ Microbiol. 2002 May;68(5):2382-90 - PubMed
  49. Appl Environ Microbiol. 2007 Aug;73(15):4797-804 - PubMed
  50. Int J Food Microbiol. 2012 Jan 16;152(3):123-8 - PubMed
  51. Appl Environ Microbiol. 2002 Apr;68(4):1794-802 - PubMed
  52. Int J Food Microbiol. 2009 Nov 15;135(3):303-11 - PubMed
  53. Int J Med Microbiol. 2006 Aug;296(4-5):237-58 - PubMed
  54. Int J Food Microbiol. 2008 Nov 30;128(1):2-9 - PubMed
  55. Appl Environ Microbiol. 2012 May;78(10):3571-9 - PubMed
  56. J Bacteriol. 2004 Jul;186(13):4100-9 - PubMed
  57. FEMS Microbiol Rev. 2008 Jul;32(4):579-606 - PubMed
  58. Microbes Infect. 2000 Apr;2(5):533-42 - PubMed
  59. Int J Syst Evol Microbiol. 2013 Jan;63(Pt 1):31-40 - PubMed
  60. J Appl Microbiol. 2004;97(1):214-9 - PubMed
  61. FEMS Microbiol Lett. 2005 Sep 15;250(2):175-84 - PubMed
  62. Mol Microbiol. 2001 Apr;40(2):465-75 - PubMed
  63. PLoS One. 2010 Oct 29;5(10):e13746 - PubMed
  64. FEMS Microbiol Lett. 2002 Mar 5;208(2):245-51 - PubMed
  65. J Bacteriol. 2001 Oct;183(19):5617-31 - PubMed
  66. Nature. 1961 Jul 8;191:144-8 - PubMed
  67. Annu Rev Microbiol. 2007;61:215-36 - PubMed
  68. Microbiol Mol Biol Rev. 2003 Sep;67(3):429-53, table of contents - PubMed
  69. Int J Food Microbiol. 2010 May 30;139 Suppl 1:S79-94 - PubMed
  70. Microbiol Rev. 1991 Dec;55(4):561-85 - PubMed
  71. Microbiology (Reading). 1997 Oct;143 ( Pt 10):3329-3336 - PubMed
  72. J Clin Microbiol. 2011 Dec;49(12):4379-81 - PubMed
  73. Microbiology (Reading). 2005 Oct;151(Pt 10):3323-3335 - PubMed
  74. Microbiol Mol Biol Rev. 2005 Dec;69(4):527-43 - PubMed
  75. Biochem J. 1942 Sep;36(7-9):600-18 - PubMed
  76. Annu Rev Genet. 1991;25:315-37 - PubMed
  77. Int J Food Microbiol. 1999 Sep 15;50(1-2):65-91 - PubMed
  78. J Bacteriol. 2009 Jul;191(14):4522-33 - PubMed
  79. Appl Environ Microbiol. 2009 Jun;75(12):4111-9 - PubMed
  80. Appl Environ Microbiol. 2009 Feb;75(4):981-90 - PubMed
  81. Crit Rev Microbiol. 1994;20(1):13-56 - PubMed
  82. Int J Food Microbiol. 2010 Jan 31;137(1):13-21 - PubMed
  83. Appl Environ Microbiol. 1988 Jun;54(6):1318-24 - PubMed
  84. Microbiology (Reading). 2008 Nov;154(Pt 11):3247-3255 - PubMed
  85. Environ Microbiol. 2010 Mar;12(3):730-45 - PubMed
  86. Antonie Van Leeuwenhoek. 2002 Aug;82(1-4):187-216 - PubMed
  87. J Bacteriol. 2003 Mar;185(6):1967-75 - PubMed
  88. Curr Opin Microbiol. 1999 Apr;2(2):188-94 - PubMed
  89. Int J Food Microbiol. 1999 Feb 2;46(2):173-6 - PubMed
  90. FEMS Microbiol Lett. 2000 Dec 1;193(1):1-6 - PubMed
  91. Mol Microbiol. 1993 Apr;8(1):5-14 - PubMed
  92. J Hyg (Lond). 1980 Feb;84(1):77-82 - PubMed
  93. J Bacteriol. 2000 Sep;182(18):5036-45 - PubMed
  94. Annu Rev Microbiol. 2009;63:575-97 - PubMed
  95. J Bacteriol. 2001 Dec;183(24):7318-28 - PubMed
  96. Environ Microbiol. 2011 Nov;13(11):2835-43 - PubMed
  97. Environ Microbiol. 2011 Jun;13(6):1387-94 - PubMed
  98. Biochem J. 1974 Oct;144(1):87-90 - PubMed
  99. Int J Food Microbiol. 2000 Sep 25;60(2-3):137-46 - PubMed
  100. J Bacteriol. 2005 Aug;187(16):5846-51 - PubMed
  101. J Bacteriol. 1998 Jul;180(14):3650-6 - PubMed
  102. J Appl Microbiol. 2009 Jan;106(1):258-67 - PubMed
  103. J Bacteriol. 2009 Apr;191(8):2423-30 - PubMed
  104. J Bacteriol. 2004 Jan;186(2):316-25 - PubMed
  105. Mol Microbiol. 2001 Aug;41(4):757-74 - PubMed
  106. Mol Microbiol. 2000 Oct;38(2):254-61 - PubMed
  107. Lancet. 1974 May 25;1(7865):1043-5 - PubMed
  108. J Bacteriol. 2007 Mar;189(6):2376-91 - PubMed
  109. Chem Biol Interact. 2008 Jan 30;171(2):236-49 - PubMed
  110. Microbiology (Reading). 2007 Jul;153(Pt 7):2289-2303 - PubMed
  111. FEMS Microbiol Lett. 1997 Feb 15;147(2):173-80 - PubMed
  112. Int J Food Microbiol. 2002 Sep 15;78(1-2):79-97 - PubMed
  113. Appl Environ Microbiol. 2008 Feb;74(4):1276-80 - PubMed
  114. J Appl Microbiol. 2001 Dec;91(6):1085-94 - PubMed
  115. J Biosci Bioeng. 2001;92(4):342-5 - PubMed
  116. J Bacteriol. 1993 Jun;175(12):3863-75 - PubMed
  117. Int J Food Microbiol. 2000 Apr 10;55(1-3):181-6 - PubMed
  118. Novartis Found Symp. 1999;221:218-29; discussion 229-34 - PubMed
  119. Int J Food Microbiol. 2007 Jan 1;113(1):1-15 - PubMed
  120. Food Microbiol. 2007 Feb;24(1):1-6 - PubMed
  121. Environ Microbiol. 2005 Nov;7(11):1673-85 - PubMed
  122. J Bacteriol. 2000 Jun;182(11):3072-80 - PubMed
  123. Proteomics. 2004 Dec;4(12):3727-50 - PubMed
  124. Environ Microbiol. 2009 Feb;11(2):432-45 - PubMed
  125. Appl Environ Microbiol. 1995 Dec;61(12):4494-6 - PubMed
  126. Food Microbiol. 2011 Aug;28(5):1105-9 - PubMed

Publication Types