Display options
Share it on

Neuroimage Clin. 2013 Mar 22;2:440-7. doi: 10.1016/j.nicl.2013.03.006. eCollection 2013.

Diffuse reduction of white matter connectivity in cerebral palsy with specific vulnerability of long range fiber tracts.

NeuroImage. Clinical

Zoë A Englander, Carolyn E Pizoli, Anastasiya Batrachenko, Jessica Sun, Gordon Worley, Mohamad A Mikati, Joanne Kurtzberg, Allen W Song

Affiliations

  1. Brain Imaging and Analysis Center, Duke University Medical Center, USA.

PMID: 24179798 PMCID: PMC3777769 DOI: 10.1016/j.nicl.2013.03.006

Abstract

Cerebral palsy (CP) is a heterogeneous group of non-progressive motor disorders caused by injury to the developing fetal or infant brain. Although the defining feature of CP is motor impairment, numerous other neurodevelopmental disabilities are associated with CP and contribute greatly to its morbidity. The relationship between brain structure and neurodevelopmental outcomes in CP is complex, and current evidence suggests that motor and developmental outcomes are related to the spatial pattern and extent of brain injury. Given that multiple disabilities are frequently associated with CP, and that there is increasing burden of neurodevelopmental disability with increasing motor severity, global white matter (WM) connectivity was examined in a cohort of 17 children with bilateral CP to test the hypothesis that increased global WM damage will be seen in the group of severely affected (Gross Motor Function Classification Scale (GMFCS) level of IV) as compared to moderately affected (GMFCS of II or III) individuals. Diffusion tensor tractography was performed and the resulting fibers between anatomically defined brain regions were quantified and analyzed in relation to GMFCS levels. Overall, a reduction in total WM connectivity throughout the brain in severe versus moderate CP was observed, including but not limited to regions associated with the sensorimotor system. Our results also show a diffuse and significant reduction in global inter-regional connectivity between severity groups, represented by inter-regional fiber count, throughout the brain. Furthermore, it was also observed that there is a significant difference (p = 0.02) in long-range connectivity in patients with severe CP as compared to those with moderate CP, whereas short-range connectivity was similar between groups. This new finding, which has not been previously reported in the CP literature, demonstrates that CP may involve distributed, network-level structural disruptions.

Keywords: Cerebral palsy; Diffusion tensor imaging; Network disruption; Structural connectome; Tractography

References

  1. Neurology. 2011 Jun 14;76(24):2055-61 - PubMed
  2. Neuroradiology. 2012 Jun;54(6):615-21 - PubMed
  3. Pediatr Res. 2010 Sep;68(3):205-9 - PubMed
  4. Lancet Neurol. 2010 Jan;9(1):39-45 - PubMed
  5. Brain Connect. 2011;1(4):309-16 - PubMed
  6. Dev Med Child Neurol. 2012 Aug;54(8):684-96 - PubMed
  7. J Cogn Neurosci. 2012 Jun;24(6):1275-85 - PubMed
  8. Neurosci Lett. 2012 Mar 14;512(1):53-8 - PubMed
  9. Neuroimage. 2011 Feb 1;54(3):1854-61 - PubMed
  10. Clin Obstet Gynecol. 2008 Dec;51(4):787-99 - PubMed
  11. Dev Med Child Neurol. 2010 Oct;52(10):935-40 - PubMed
  12. Dev Med Child Neurol. 2007 Feb;49(2):144-51 - PubMed
  13. Neuroradiology. 2010 Aug;52(8):759-65 - PubMed
  14. Conf Proc IEEE Eng Med Biol Soc. 2004;2004:4421-4 - PubMed
  15. Eur J Paediatr Neurol. 2011 Jan;15(1):29-35 - PubMed
  16. Am J Obstet Gynecol. 2003 Mar;188(3):628-33 - PubMed
  17. Neuroimage. 2002 Apr;15(4):870-8 - PubMed
  18. J Child Neurol. 2005 Dec;20(12):936-9 - PubMed
  19. Neuroimage. 2009 Jun;46(2):486-99 - PubMed
  20. Dev Med Child Neurol. 2007 Oct;49(10):745-50 - PubMed
  21. IEEE Trans Med Imaging. 2001 Jan;20(1):45-57 - PubMed
  22. Eur J Paediatr Neurol. 2013 May;17(3):294-301 - PubMed
  23. Pediatrics. 2008 Sep;122(3):500-6 - PubMed
  24. J Child Neurol. 2005 Dec;20(12):940-9 - PubMed
  25. Res Dev Disabil. 2013 Nov;34(11):3875-83 - PubMed
  26. J Transl Med. 2012 Mar 23;10:58 - PubMed
  27. N Engl J Med. 2006 Aug 17;355(7):685-94 - PubMed
  28. AJNR Am J Neuroradiol. 2007 Aug;28(7):1213-22 - PubMed
  29. Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9685-90 - PubMed
  30. Brain. 2011 Apr;134(Pt 4):1199-210 - PubMed
  31. Pediatr Neurol. 2008 Nov;39(5):341-9 - PubMed
  32. J Child Neurol. 2008 Feb;23(2):216-27 - PubMed
  33. Neurology. 2008 Nov 18;71(21):1676-82 - PubMed
  34. Front Neuroinform. 2011 Jun 06;5:3 - PubMed
  35. J Child Neurol. 2009 Oct;24(10):1230-5 - PubMed
  36. J Int Neuropsychol Soc. 1997 Nov;3(6):521-7 - PubMed
  37. Brain. 2005 Nov;128(Pt 11):2562-77 - PubMed
  38. Brain. 2007 Oct;130(Pt 10):2508-19 - PubMed
  39. Pediatrics. 2003 Jul;112(1 Pt 1):176-80 - PubMed
  40. Stem Cells. 2013 Mar;31(3):581-91 - PubMed
  41. Dev Med Child Neurol. 1997 Apr;39(4):214-23 - PubMed
  42. J Pediatr. 2013 Feb;162(2):369-74.e1 - PubMed
  43. Dev Med Child Neurol. 2005 Aug;47(8):571-6 - PubMed
  44. Cereb Cortex. 2010 Dec;20(12):2852-62 - PubMed
  45. Neurology. 2002 Sep 10;59(5):752-6 - PubMed
  46. Neuron. 2006 Sep 7;51(5):527-39 - PubMed
  47. Dev Med Child Neurol. 2009 Sep;51(9):697-704 - PubMed
  48. Ann Neurol. 1999 Feb;45(2):265-9 - PubMed

Publication Types

Grant support