Display options
Share it on

Theor Appl Genet. 1986 Mar;71(6):765-71. doi: 10.1007/BF00276416.

The suitability of restriction fragment length polymorphisms as genetic markers in maize.

TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik

S V Evola, F A Burr, B Burr

Affiliations

  1. Department of Biology, Brookhaven National Laboratory, 11973, Upton, NY, USA.

PMID: 24247701 DOI: 10.1007/BF00276416

Abstract

Strain identification in Zea mays by restriction fragment length polymorphism should be feasible due to the high degree of polymorphism found at many loci. The polymorphism in maize is apparently higher than that currently known for any other organism. Five randomly selected maize inbred lines were examined by Southern filter hybridization with probes of cloned low copy sequences. Typically, several alleles could be distinguished among the inbred lines with any one probe and an appropriately selected restriction enzyme. Despite considerable polymorphism at the DNA level, 16 RFLP markers in three inbred lines of maize were examined for six to 11 generations and found be stable. Mapping of RFLP markers in maize can be accelerated by the use of B-A translocation stocks, which enable localization of a marker to chromosome arm in one generation. The use of recombinant inbred lines in further refinement of the map is discussed.

References

  1. EMBO J. 1984 May;3(5):1021-8 - PubMed
  2. Genetics. 1983 Nov;105(3):733-43 - PubMed
  3. Nature. 1984 May 17-23;309(5965):253-5 - PubMed
  4. Nature. 1983 Aug 4-10;304(5925):412-7 - PubMed
  5. Genetics. 1980 Aug;95(4):929-44 - PubMed
  6. J Mol Biol. 1977 Jun 15;113(1):237-51 - PubMed
  7. Proc Natl Acad Sci U S A. 1985 Jun;82(12):4177-81 - PubMed
  8. Nature. 1981 Nov 12;294(5837):115-20 - PubMed
  9. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6754-8 - PubMed
  10. Proc Natl Acad Sci U S A. 1984 Jun;81(11):3486-90 - PubMed
  11. Genetics. 1981 May;98(1):143-56 - PubMed
  12. J Mol Biol. 1975 Nov 5;98(3):503-17 - PubMed
  13. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6329-33 - PubMed
  14. Cell. 1979 Sep;18(1):1-10 - PubMed
  15. J Mol Appl Genet. 1983;2(3):237-47 - PubMed
  16. Cell. 1983 Nov;35(1):225-33 - PubMed
  17. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5269-73 - PubMed
  18. Nature. 1983 Nov 17-23;306(5940):234-8 - PubMed
  19. Cell. 1982 Jul;29(3):977-86 - PubMed
  20. Am J Hum Genet. 1980 May;32(3):314-31 - PubMed
  21. Gene. 1980 May;9(3-4):287-305 - PubMed
  22. Genetics. 1980 Jun;95(2):425-42 - PubMed
  23. Gene. 1982 Oct;19(3):259-68 - PubMed
  24. Genetics. 1947 Jul;32(4):391-409 - PubMed
  25. Theor Appl Genet. 1983 Nov;67(1):35-43 - PubMed
  26. J Mol Biol. 1977 Feb 15;110(1):119-46 - PubMed
  27. Proc Natl Acad Sci U S A. 1982 Sep;79(18):5631-5 - PubMed
  28. Proc Natl Acad Sci U S A. 1978 Nov;75(11):5631-5 - PubMed
  29. Nature. 1985 Jan 10-18;313(5998):101-5 - PubMed
  30. J Mol Biol. 1982 Jan 5;154(1):33-49 - PubMed
  31. Nucleic Acids Res. 1979 Jun 11;6(7):2519-44 - PubMed
  32. Heredity (Edinb). 1973 Apr;30(2):111-26 - PubMed
  33. Theor Appl Genet. 1983 Nov;67(1):25-33 - PubMed
  34. J Mol Biol. 1983 Nov 15;170(4):827-42 - PubMed
  35. Nature. 1985 Apr 25-May 1;314(6013):738-40 - PubMed

Publication Types