Display options
Share it on

Curr Genet. 1981 Nov;4(2):99-107. doi: 10.1007/BF00365688.

Anatomy of amplified mitochondrial DNA in "Ragged" mutants of Aspergillus amstelodami: Excision points within protein genes and a common 215 bp segment containing a possible origin of replication.

Current genetics

C M Lazarus, H Küntzel

Affiliations

  1. Abteilung Chemie, Max-Planck-Institut für experimentelle Medizin, Hermann-Rein-Straße 3, 3400, Göttingen, Germany.

PMID: 24185955 DOI: 10.1007/BF00365688

Abstract

The extranuclearly-inherited ragged growth phenotype (Rgd) of Aspergillus amstelodami is always accompanied by excision and head-to-tail amplification of mtDNA sequences. In one mutant strain (Rgd1) the amplified mtDNA segment (rgd1 DNA, monomeric length 0.9 kb) maps downstream of the large subunit ribosomal RNA gene (Region 1), whereas in all other strains analyzed the amplified sequences (rdg3-7DNA) are located in Region 2 between genes coding for cytochrome b and ATPase subunit 6. The various region 2 sequences differ in lengths (1.5 to 2.7 kb) but have in common a 215 bp sequence mapping between an. unidentified protein gene (corresponding to URF4 of human mtDNA) and an arginine tRNA gene. This common sequence may contain an origin of replication, because a looped-out hairpin structure similar to that of yeast and human mitochondrial origin sequences can be formed. Furthermore, Region 2 DNA suppresses replication of Region 1 DNA, indicating that the former group of molecules contains the more efficient origin. The nucleotide sequence of the rgd6 repeat unit starts and ends within protein genes of mtDNA, and no homologies were found between heads and tails or their flanking sequences.

References

  1. Cell. 1980 Aug;21(1):189-94 - PubMed
  2. Cell. 1980 Jun;20(2):507-17 - PubMed
  3. Nature. 1981 Apr 9;290(5806):457-65 - PubMed
  4. Mol Gen Genet. 1980 Feb;177(3):389-97 - PubMed
  5. J Gen Microbiol. 1972 Sep;72(2):221-9 - PubMed
  6. J Bacteriol. 1972 Jun;110(3):1135-46 - PubMed
  7. Curr Genet. 1981 May;3(2):151-6 - PubMed
  8. FEBS Lett. 1978 Mar 1;87(1):107-10 - PubMed
  9. J Mol Biol. 1979 Dec 5;135(2):327-51 - PubMed
  10. Annu Rev Biochem. 1972;41:333-76 - PubMed
  11. Mol Gen Genet. 1979 Mar 27;171(3):239-50 - PubMed
  12. Mol Gen Genet. 1981;182(2):332-5 - PubMed
  13. Curr Genet. 1980 Feb;1(2):173-6 - PubMed
  14. Nature. 1979 Jan 18;277(5693):192-8 - PubMed
  15. Nucleic Acids Res. 1978 Feb;5(2):317-30 - PubMed
  16. Nature. 1981 Jul 2;292(5818):75-8 - PubMed
  17. Cell. 1981 Feb;23(2):625-33 - PubMed
  18. Nature. 1978 Jul 6;274(5666):87-9 - PubMed
  19. Cell. 1979 May;17(1):191-200 - PubMed
  20. Eur J Biochem. 1980 May;106(2):633-41 - PubMed
  21. Curr Genet. 1981 Jul;3(3):205-11 - PubMed
  22. Cell. 1979 Dec;18(4):1197-207 - PubMed
  23. Curr Genet. 1981 Apr;3(1):13-21 - PubMed
  24. Proc Natl Acad Sci U S A. 1980 Oct;77(10):6032-6 - PubMed
  25. Nucleic Acids Res. 1979;6(5):1791-803 - PubMed
  26. FEBS Lett. 1979 Dec 15;108(2):429-32 - PubMed
  27. Curr Genet. 1981 Jul;3(3):221-8 - PubMed
  28. Biochimie. 1973;55(6):779-92 - PubMed
  29. Mol Gen Genet. 1980;178(3):639-46 - PubMed

Publication Types