Display options
Share it on

Planta. 1991 Oct;185(3):287-96. doi: 10.1007/BF00201046.

Carbon metabolism enzymes and photosynthesis in transgenic tobacco (Nicotiana tabacum L.) having excess phytochrome.

Planta

T D Sharkey, T L Vassey, P J Vanderveer, R D Vierstra

Affiliations

  1. Department of Botany, University of Wisconsin, 53706, Madison, WI, USA.

PMID: 24186408 DOI: 10.1007/BF00201046

Abstract

J.M. Keller et al. (1989, EMBO J. 8, 1005-1012) introduced a phytochrome gene controlled by a cauliflower mosaic virus 35S promoter into tobacco (Nicotiana tabacum L.) providing material to test whether several photosynthesis enzymes can be increased by one modification to the plant. We report here that this transgenic tobacco had greater amounts of all enzymes examined as well as greater amounts of total protein and chlorophyll per unit leaf area. Fructose bisphosphatase (E.C. 3.1.3.11), glyceraldehyde 3-phosphate dehydrogenase (E.C. 1.2.1.12), and sucrose-phosphate synthase (E.C. 2.4.1.14) were also higher when expressed per unit protein. However, ribulose-1,5-bisphosphate carboxylase (E.C. 4.1.1.39) amount per unit leaf protein was the same in transgenic and wild-type (WT) plants. Photosynthesis in the transgenic plants was lower than in WT at air levels of CO2, but higher than in WT above 1000 μbar CO2. The photosynthesis results indicated a high resistance to CO2 diffusion in the mesophyll of the transgenic plants. Examination of electron micrographs showed that chloroplasts in the transgenic plants were often cup-shaped, preventing close association between chloroplast and cell surface. Chloroplast cupping may have caused the increase in the mesophyll resistance to CO2 diffusion. We conclude that it is possible to affect more than one enzyme with a single modification, but unexpected physical modifications worsened the photosynthetic performance of this plant.

References

  1. Planta. 1989 May;178(1):110-22 - PubMed
  2. Biochim Biophys Acta. 1965 Nov 29;109(2):448-53 - PubMed
  3. Plant Physiol. 1990 Jul;93(3):990-7 - PubMed
  4. Planta. 1988 Dec;176(3):415-24 - PubMed
  5. Planta. 1988 Feb;173(2):267-74 - PubMed
  6. Plant Physiol. 1991 Jul;96(3):775-85 - PubMed
  7. Eur J Biochem. 1990 Jan 26;187(2):445-53 - PubMed
  8. Proc Natl Acad Sci U S A. 1984 Feb;81(4):1112-6 - PubMed
  9. Proc Natl Acad Sci U S A. 1983 May;80(9):2632-6 - PubMed
  10. Planta. 1987 Mar;170(3):400-7 - PubMed
  11. EMBO J. 1989 Apr;8(4):1005-12 - PubMed
  12. Planta. 1980 Jun;149(1):78-90 - PubMed
  13. Proc Natl Acad Sci U S A. 1986 Apr;83(8):2358-62 - PubMed
  14. Eur J Biochem. 1983 Jul 1;133(3):617-20 - PubMed
  15. Science. 1984 Dec 21;226(4681):1447-9 - PubMed
  16. Plant Physiol. 1989 Apr;89(4):1066-70 - PubMed
  17. Plant Physiol. 1989 Apr;89(4):1060-5 - PubMed
  18. Plant Physiol. 1988 Nov;88(3):540-2 - PubMed
  19. Plant Physiol. 1983 Jul;72(3):717-24 - PubMed
  20. Curr Genet. 1989 Sep;16(3):203-9 - PubMed
  21. Photosynth Res. 1985 Sep;6(3):247-59 - PubMed
  22. Plant Physiol. 1989 Jan;89(1):347-51 - PubMed
  23. Plant Physiol. 1988 Mar;86(3):667-71 - PubMed
  24. Plant Physiol. 1989 Aug;90(4):1408-16 - PubMed
  25. Photosynth Res. 1991 Apr;28(1):41-8 - PubMed
  26. Plant Physiol. 1989 Apr;89(4):1253-7 - PubMed
  27. Planta. 1986 Feb;167(2):260-3 - PubMed
  28. Plant Physiol. 1990 Dec;94(4):1728-34 - PubMed

Publication Types