Display options
Share it on

Pharmaceuticals (Basel). 2013 Sep 06;6(9):1130-44. doi: 10.3390/ph6091130.

What Goes around Comes around-A Comparative Study of the Influence of Chemical Modifications on the Antimicrobial Properties of Small Cyclic Peptides.

Pharmaceuticals (Basel, Switzerland)

Kathi Scheinpflug, Heike Nikolenko, Igor V Komarov, Marina Rautenbach, Margitta Dathe

Affiliations

  1. Leibniz-Institut für Molekulare Pharmakologie, Robert-Roessle-Str. 10, Berlin 13125, Germany. [email protected].

PMID: 24276422 PMCID: PMC3818835 DOI: 10.3390/ph6091130

Abstract

Tryptophan and arginine-rich cyclic hexapeptides of the type cyclo-RRRWFW combine high antibacterial activity with rapid cell killing kinetics, but show low toxicity in human cell lines. The peptides fulfil the structural requirements for membrane interaction such as high amphipathicity and cationic charge, but membrane permeabilisation, which is the most common mode of action of antimicrobial peptides (AMPs), could not be observed. Our current studies focus on elucidating a putative membrane translocation mechanism whereupon the peptides might interfere with intracellular processes. These investigations require particular analytical tools: fluorescent analogues and peptides bearing appropriate reactive groups were synthesized and characterized in order to be used in confocal laser scanning microscopy and HPLC analysis. We found that minimal changes in both the cationic and hydrophobic domain of the peptides in most cases led to significant reduction of antimicrobial activity and/or changes in the mode of action. However, we were able to identify two modified peptides which exhibited properties similar to those of the cyclic parent hexapeptide and are suitable for subsequent studies on membrane translocation and uptake into bacterial cells.

References

  1. Biochemistry. 1996 Sep 24;35(38):12612-22 - PubMed
  2. Bioorg Med Chem. 2009 Aug 1;17(15):5541-8 - PubMed
  3. Cold Spring Harb Perspect Biol. 2010 Jan;2(1):a000331 - PubMed
  4. Biochim Biophys Acta. 2009 Jan;1788(1):289-94 - PubMed
  5. J Pept Sci. 1999 Apr;5(4):185-94 - PubMed
  6. J Pept Sci. 2008 Apr;14(4):535-43 - PubMed
  7. Biochim Biophys Acta. 2013 Apr;1828(4):1198-204 - PubMed
  8. Bioorg Med Chem. 2007 Nov 1;15(21):6667-77 - PubMed
  9. Eur Biophys J. 1994;23(4):253-62 - PubMed
  10. Histochem J. 2001 Feb;33(2):65-9 - PubMed
  11. ACS Chem Biol. 2010 Oct 15;5(10):905-17 - PubMed
  12. Protein Pept Lett. 2005 Jan;12(1):31-9 - PubMed
  13. J Biol Chem. 1999 May 7;274(19):13181-92 - PubMed
  14. FEBS Lett. 1997 Feb 17;403(2):208-12 - PubMed
  15. Methods. 2009 May;48(1):8-13 - PubMed
  16. J Pept Sci. 2008 Apr;14(4):524-7 - PubMed
  17. Cell Rep. 2012 May 31;1(5):417-23 - PubMed
  18. Antimicrob Agents Chemother. 2011 Feb;55(2):788-97 - PubMed
  19. J Am Chem Soc. 2013 Jul 3;135(26):9768-76 - PubMed
  20. Biochim Biophys Acta. 2002 Feb 1;1558(2):171-86 - PubMed
  21. Nat Commun. 2011 Aug 30;2:453 - PubMed
  22. Eur Biophys J. 2011 Apr;40(4):515-28 - PubMed
  23. Chembiochem. 2005 Sep;6(9):1654-62 - PubMed
  24. Biochim Biophys Acta. 1999 Dec 15;1462(1-2):71-87 - PubMed
  25. Biochim Biophys Acta. 1998 Nov 11;1414(1-2):127-39 - PubMed
  26. J Pept Sci. 2011 May;17(5):298-305 - PubMed
  27. J Org Chem. 1996 Dec 13;61(25):8831-8838 - PubMed
  28. J Org Chem. 2010 May 7;75(9):2790-7 - PubMed
  29. J Pept Res. 2004 Oct;64(4):159-69 - PubMed
  30. Nat Rev Microbiol. 2005 Mar;3(3):238-50 - PubMed
  31. Bioconjug Chem. 2000 Sep-Oct;11(5):619-26 - PubMed
  32. Nat Biotechnol. 2006 Dec;24(12):1551-7 - PubMed
  33. FEBS J. 2009 Nov;276(22):6483-96 - PubMed
  34. Biochemistry. 2004 Jul 20;43(28):9140-50 - PubMed

Publication Types