Display options
Share it on

FEBS Open Bio. 2013 Aug 19;3:379-86. doi: 10.1016/j.fob.2013.08.005. eCollection 2013.

NAD-dependent lactate dehydrogenase catalyses the first step in respiratory utilization of lactate by Lactococcus lactis.

FEBS open bio

Rui Zhao, Sui Zheng, Cuicui Duan, Fei Liu, Lijie Yang, Guicheng Huo

Affiliations

  1. Key Laboratory of Dairy Science, Northeast Agricultural University, Harbin 150030, China ; Food Processing Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150030, China.

PMID: 24251099 PMCID: PMC3821033 DOI: 10.1016/j.fob.2013.08.005

Abstract

Lactococcus lactis can undergo respiration when hemin is added to an aerobic culture. The most distinctive feature of lactococcal respiration is that lactate could be consumed in the stationary phase concomitantly with the rapid accumulation of diacetyl and acetoin. However, the enzyme responsible for lactate utilization in this process has not yet been identified. As genes for fermentative NAD-dependent l-lactate dehydrogenase (l-nLDH) and potential electron transport chain (ETC)-related NAD-independent l-LDH (l-iLDH) exist in L. lactis, the activities of these enzymes were measured in this study using crude cell extracts prepared from respiratory and fermentation cultures. Further studies were conducted with purified preparations of recombinant LDH homologous proteins. The results showed that l-iLDH activity was hardly detected in both crude cell extracts and purified l-iLDH homologous protein while l-nLDH activity was very significant. This suggested that l-iLDHs were inactive in lactate utilization. The results of kinetic analyses and the effects of activator, inhibitor, substrate and product concentrations on the reaction equilibrium showed that l-nLDH was much more prone to catalyze the pyruvate reduction reaction but could reverse its role provided that the concentrations of NADH and pyruvate were extremely low while NAD and lactate were abundant. Metabolite analysis in respiratory culture revealed that the cellular status in the stationary phase was beneficial for l-nLDH to catalyze lactate oxidation. The factors accounting for the respiration- and stationary phase-dependent lactate utilization in L. lactis are discussed here.

Keywords: DCPIP, 2,6-dichlorophenolindophenol; ETC, electron transport chain; FBP, fructose 1,6-bisphosphate; IPP, isopentenyl diphosphate; LDH, lactate dehydrogenase; Lactate dehydrogenase; Lactate oxidation; Lactococcus lactis; PMF, proton motive force; Proton motive force; Type II IPP isomerase; iLDH, NAD-independent lactate dehydrogenase; nLDH, NAD-dependent lactate dehydrogenase

References

  1. Mol Microbiol. 2004 Nov;54(4):962-79 - PubMed
  2. FEBS J. 2010 Apr;277(8):1843-52 - PubMed
  3. Microb Cell Fact. 2009 May 29;8:28 - PubMed
  4. Appl Environ Microbiol. 2013 Jan;79(1):376-80 - PubMed
  5. J Bacteriol. 2004 Mar;186(6):1648-57 - PubMed
  6. J Bacteriol. 1977 Jul;131(1):82-91 - PubMed
  7. FEBS J. 2007 Nov;274(22):5924-36 - PubMed
  8. J Bacteriol. 2001 Nov;183(22):6707-9 - PubMed
  9. J Bacteriol. 1987 Apr;169(4):1460-8 - PubMed
  10. FEBS J. 2009 Jan;276(2):410-24 - PubMed
  11. Appl Environ Microbiol. 2011 Oct;77(19):6826-35 - PubMed
  12. Mol Microbiol. 2008 Mar;67(5):947-57 - PubMed
  13. Proc Natl Acad Sci U S A. 2009 Feb 24;106(8):2874-9 - PubMed
  14. Biotechnol Appl Biochem. 2008 May;50(Pt 1):25-33 - PubMed
  15. J Bacteriol. 2012 May;194(10):2687-92 - PubMed
  16. Mol Microbiol. 2004 Sep;53(5):1331-42 - PubMed
  17. Appl Environ Microbiol. 2004 Mar;70(3):1843-6 - PubMed
  18. Antonie Van Leeuwenhoek. 2002 Aug;82(1-4):3-27 - PubMed
  19. FEBS J. 2007 Jun;274(11):2738-48 - PubMed
  20. Yeast. 2005 Oct 30;22(14):1155-69 - PubMed
  21. Antonie Van Leeuwenhoek. 1970;36(3):335-48 - PubMed
  22. FEBS J. 2005 May;272(9):2292-303 - PubMed
  23. J Bacteriol. 2001 Aug;183(15):4509-16 - PubMed
  24. Biotechnol Lett. 2007 Jan;29(1):105-10 - PubMed
  25. J Bacteriol. 2004 Oct;186(19):6661-6 - PubMed
  26. Biochem Biophys Res Commun. 2004 Sep 24;322(3):905-10 - PubMed
  27. Antonie Van Leeuwenhoek. 2002 Aug;82(1-4):263-9 - PubMed
  28. J Bacteriol. 2008 Jul;190(14):4903-11 - PubMed
  29. Biotechnol Bioeng. 2006 Dec 20;95(6):1070-80 - PubMed
  30. Proc Natl Acad Sci U S A. 2001 Jan 30;98(3):932-7 - PubMed
  31. Microbiol Rev. 1980 Mar;44(1):106-39 - PubMed
  32. Eur J Biochem. 2004 Jul;271(13):2658-69 - PubMed
  33. J Bacteriol. 2007 Jul;189(14):5203-9 - PubMed
  34. J Bacteriol. 2009 Apr;191(8):2423-30 - PubMed
  35. J Bacteriol. 1972 Aug;111(2):397-403 - PubMed
  36. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5502-6 - PubMed
  37. J Bacteriol. 2007 Apr;189(8):3256-70 - PubMed
  38. Environ Microbiol. 2011 Jan;13(1):48-61 - PubMed
  39. J Biol Chem. 2002 Aug 2;277(31):28088-98 - PubMed

Publication Types