Display options
Share it on

Front Syst Neurosci. 2013 Nov 06;7:78. doi: 10.3389/fnsys.2013.00078. eCollection 2013.

Global actions of nicotine on the striatal microcircuit.

Frontiers in systems neuroscience

Víctor Plata, Mariana Duhne, Jesús Pérez-Ortega, Ricardo Hernández-Martinez, Pavel Rueda-Orozco, Elvira Galarraga, René Drucker-Colín, José Bargas

Affiliations

  1. División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México Mexico City, Mexico.

PMID: 24223538 PMCID: PMC3818482 DOI: 10.3389/fnsys.2013.00078

Abstract

THE QUESTION TO SOLVE IN THE PRESENT WORK IS: what is the predominant action induced by the activation of cholinergic-nicotinic receptors (nAChrs) in the striatal network given that nAChrs are expressed by several elements of the circuit: cortical terminals, dopamine terminals, and various striatal GABAergic interneurons. To answer this question some type of multicellular recording has to be used without losing single cell resolution. Here, we used calcium imaging and nicotine. It is known that in the presence of low micromolar N-Methyl-D-aspartate (NMDA), the striatal microcircuit exhibits neuronal activity consisting in the spontaneous synchronization of different neuron pools that interchange their activity following determined sequences. The striatal circuit also exhibits profuse spontaneous activity in pathological states (without NMDA) such as dopamine depletion. However, in this case, most pathological activity is mostly generated by the same neuron pool. Here, we show that both types of activity are inhibited during the application of nicotine. Nicotine actions were blocked by mecamylamine, a non-specific antagonist of nAChrs. Interestingly, inhibitory actions of nicotine were also blocked by the GABAA-receptor antagonist bicuculline, in which case, the actions of nicotine on the circuit became excitatory and facilitated neuronal synchronization. We conclude that the predominant action of nicotine in the striatal microcircuit is indirect, via the activation of networks of inhibitory interneurons. This action inhibits striatal pathological activity in early Parkinsonian animals almost as potently as L-DOPA.

Keywords: GABAergic interneurons; nicotine; nicotinic receptors; striatal microcircuit

References

  1. J Neurophysiol. 2005 May;93(5):2507-19 - PubMed
  2. J Neurophysiol. 2012 Aug;108(4):1032-43 - PubMed
  3. J Neurophysiol. 2002 Apr;87(4):2190-4 - PubMed
  4. Learn Mem. 2012 Dec 17;20(1):21-8 - PubMed
  5. Neurochem Int. 2010 May-Jun;56(6-7):850-5 - PubMed
  6. Mov Disord. 2005 Apr;20(4):395-402 - PubMed
  7. J Neurosci. 2010 Aug 25;30(34):11326-36 - PubMed
  8. J Neurosci. 1999 Jul 1;19(13):5586-96 - PubMed
  9. IEEE Trans Syst Man Cybern B Cybern. 1998;28(3):301-15 - PubMed
  10. Eur J Neurosci. 2004 Sep;20(5):1219-30 - PubMed
  11. J Comp Neurol. 1992 Sep 8;323(2):252-68 - PubMed
  12. Neuroscience. 2008 Sep 9;155(4):1079-97 - PubMed
  13. J Neurosci. 2005 Feb 2;25(5):1050-62 - PubMed
  14. J Neurosci. 2011 Nov 16;31(46):16757-69 - PubMed
  15. Clin Neurophysiol. 2005 Nov;116(11):2510-9 - PubMed
  16. Biochem Pharmacol. 2007 Oct 15;74(8):1224-34 - PubMed
  17. Cell Rep. 2012 Jul 26;2(1):33-41 - PubMed
  18. J Neurosci. 2003 Jul 16;23(15):6245-54 - PubMed
  19. Front Neuroanat. 2010 Dec 29;4:150 - PubMed
  20. Neuron. 2012 Jul 12;75(1):58-64 - PubMed
  21. J Neurosci. 2009 Oct 7;29(40):12428-39 - PubMed
  22. Neuron. 2008 Nov 26;60(4):543-54 - PubMed
  23. J Neurosci. 2005 Nov 2;25(44):10230-8 - PubMed
  24. Neuroscience. 2001;103(4):1017-24 - PubMed
  25. Nat Neurosci. 2011 Dec 11;15(1):123-30 - PubMed
  26. J Neurophysiol. 2008 Mar;99(3):1435-50 - PubMed
  27. Neurology. 1999 Jan 1;52(1):115-9 - PubMed
  28. Science. 2004 Apr 23;304(5670):559-64 - PubMed
  29. J Neurosci. 2008 May 21;28(21):5504-12 - PubMed
  30. Handb Exp Pharmacol. 2012;(208):223-41 - PubMed
  31. Psychopharmacology (Berl). 1994 Sep;116(1):117-9 - PubMed
  32. J Neurophysiol. 2002 Dec;88(6):3315-30 - PubMed
  33. Biochem Pharmacol. 2007 Oct 15;74(8):1235-46 - PubMed
  34. J Neurosci. 2002 Aug 1;22(15):6347-52 - PubMed
  35. CNS Neurol Disord Drug Targets. 2012 Nov 1;11(7):897-906 - PubMed
  36. J Neurophysiol. 2007 Dec;98(6):3388-96 - PubMed
  37. Ann Neurol. 1981 Aug;10(2):122-6 - PubMed
  38. Neuroscience. 2011 Dec 15;198:27-43 - PubMed
  39. J Comp Neurol. 2001 Jun 11;434(4):445-60 - PubMed
  40. J Neurosci. 2011 Oct 19;31(42):14972-83 - PubMed
  41. J Neurosci. 2009 Jun 17;29(24):7776-87 - PubMed
  42. Behav Brain Res. 1980 Oct;1(5):361-78 - PubMed
  43. J Neurochem. 2002 Mar;80(6):1071-8 - PubMed
  44. J Neurosci. 2007 Jan 17;27(3):517-28 - PubMed
  45. Neurology. 2009 Feb 3;72(5):432-8 - PubMed
  46. Neurocomputing. 2003 Jun 1;52-54:925-931 - PubMed
  47. J Neurosci. 1993 Nov;13(11):4908-23 - PubMed
  48. Curr Drug Targets. 2012 May;13(5):623-30 - PubMed
  49. J Neurophysiol. 2009 Feb;101(2):737-49 - PubMed
  50. J Neurosci. 2002 Jan 15;22(2):529-35 - PubMed
  51. J Neurosci. 1995 Jan;15(1 Pt 1):458-69 - PubMed
  52. J Physiol. 2013 Jan 1;591(1):203-17 - PubMed
  53. J Neurophysiol. 2009 Aug;102(2):682-90 - PubMed
  54. Neuroscience. 1996 Apr;71(4):937-47 - PubMed
  55. J Neurosci. 1994 Jun;14(6):3969-84 - PubMed
  56. Brain Res. 2001 Jan 12;888(2):336-342 - PubMed
  57. J Neurosci. 1999 May 1;19(9):3629-38 - PubMed
  58. J Physiol. 2003 Nov 15;553(Pt 1):169-82 - PubMed
  59. J Toxicol Clin Toxicol. 2001;39(2):135-42 - PubMed
  60. Science. 2000 Dec 22;290(5500):2323-6 - PubMed
  61. Biomed Res Int. 2013;2013:519184 - PubMed
  62. Curr Opin Neurobiol. 2004 Dec;14(6):685-92 - PubMed
  63. Biochem Pharmacol. 2009 Oct 1;78(7):744-55 - PubMed
  64. Eur J Pharmacol. 2000 Mar 30;393(1-3):51-8 - PubMed
  65. J Neurophysiol. 1999 Mar;81(3):1418-23 - PubMed
  66. J Neurosci. 2005 Aug 10;25(32):7449-58 - PubMed
  67. J Neurophysiol. 1996 Jan;75(1):142-53 - PubMed
  68. Eur J Neurol. 2007 Dec;14(12):1313-6 - PubMed
  69. J Neurosci. 2013 Mar 13;33(11):4964-75 - PubMed

Publication Types