Display options
Share it on

Int J Cell Biol. 2013;2013:898563. doi: 10.1155/2013/898563. Epub 2013 Sep 24.

Quantifying Changes in the Cellular Thiol-Disulfide Status during Differentiation of B Cells into Antibody-Secreting Plasma Cells.

International journal of cell biology

Rosa E Hansen, Mieko Otsu, Ineke Braakman, Jakob R Winther

Affiliations

  1. Section for Biomolecular Sciences, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200 Copenhagen, Denmark ; Novo Nordisk A/S, 2760 Maaloev, Denmark.

PMID: 24223594 PMCID: PMC3800581 DOI: 10.1155/2013/898563

Abstract

Plasma cells produce and secrete massive amounts of disulfide-containing antibodies. To accommodate this load on the secretory machinery, the differentiation of resting B cells into antibody-secreting plasma cells is accompanied by a preferential expansion of the secretory compartments of the cells and by an up-regulation of enzymes involved in redox regulation and protein folding. We have quantified the absolute levels of protein thiols, protein disulfides, and glutathionylated proteins in whole cells. The results show that while the global thiol-disulfide state is affected to some extent by the differentiation, steady-state levels of glutathionylated protein thiols are less than 0.3% of the total protein cysteines, even in fully differentiated cells, and the overall protein redox state is not affected until late in differentiation, when large-scale IgM production is ongoing. A general expansion of the ER does not affect global protein redox status until an extensive production of cargo proteins has started.

References

  1. Biochim Biophys Acta. 2008 Apr;1783(4):578-88 - PubMed
  2. Nat Immunol. 2003 Apr;4(4):321-9 - PubMed
  3. J Biol Chem. 2004 Jul 30;279(31):32667-73 - PubMed
  4. J Biol Chem. 1994 Jun 24;269(25):17338-48 - PubMed
  5. Eur J Immunol. 1987 Apr;17(4):555-62 - PubMed
  6. Nature. 1988 Oct 13;335(6191):649-51 - PubMed
  7. J Cell Biol. 2010 May 31;189(5):783-94 - PubMed
  8. Science. 2011 Nov 25;334(6059):1081-6 - PubMed
  9. Nature. 2001 Jul 19;412(6844):300-7 - PubMed
  10. J Cell Biol. 1992 May;117(3):505-13 - PubMed
  11. Nat Cell Biol. 1999 Jul;1(3):130-5 - PubMed
  12. J Cell Sci. 2013 Apr 1;126(Pt 7):1604-17 - PubMed
  13. Cell. 2007 Apr 20;129(2):333-44 - PubMed
  14. Methods Enzymol. 1995;251:8-28 - PubMed
  15. Antioxid Redox Signal. 2010 Oct;13(8):1145-55 - PubMed
  16. Science. 1992 Sep 11;257(5076):1496-502 - PubMed
  17. Nature. 1992 Mar 19;356(6366):260-2 - PubMed
  18. Anal Biochem. 2009 Nov 15;394(2):147-58 - PubMed
  19. Philos Trans R Soc Lond B Biol Sci. 2013 Mar 25;368(1617):20110403 - PubMed
  20. Crit Rev Biochem Mol Biol. 2005 Sep-Oct;40(5):269-83 - PubMed
  21. J Biol Chem. 2004 Feb 13;279(7):5257-62 - PubMed
  22. Antioxid Redox Signal. 2010 Oct;13(8):1133-44 - PubMed
  23. J Biol Chem. 2004 May 21;279(21):22284-93 - PubMed
  24. Mol Cell Proteomics. 2005 Sep;4(9):1297-310 - PubMed
  25. Proteins. 2004 Jan 1;54(1):20-40 - PubMed
  26. Antioxid Redox Signal. 2008 Jan;10(1):55-64 - PubMed
  27. EMBO Rep. 2006 Mar;7(3):271-5 - PubMed
  28. J Cell Biol. 2004 Aug 2;166(3):337-45 - PubMed
  29. J Cell Biol. 1990 May;110(5):1501-11 - PubMed
  30. Proc Natl Acad Sci U S A. 1979 Jun;76(6):2932-6 - PubMed
  31. Anal Biochem. 2007 Apr 1;363(1):77-82 - PubMed
  32. Proc Natl Acad Sci U S A. 2009 Jan 13;106(2):422-7 - PubMed
  33. J Mol Biol. 2011 Feb 25;406(3):503-15 - PubMed
  34. Trends Biochem Sci. 2011 Sep;36(9):485-92 - PubMed
  35. J Biol Chem. 2004 Dec 31;279(53):55341-7 - PubMed
  36. Immunity. 2003 Feb;18(2):243-53 - PubMed

Publication Types