Display options
Share it on

Nutr Diabetes. 2013 Oct 28;3:e94. doi: 10.1038/nutd.2013.33.

Children who develop type 1 diabetes early in life show low levels of carnitine and amino acids at birth: does this finding shed light on the etiopathogenesis of the disease?.

Nutrition & diabetes

G la Marca, S Malvagia, S Toni, B Piccini, V Di Ciommo, G F Bottazzo

Affiliations

  1. 1] Newborn Screening, Biochemistry and Pharmacology Labs, Clinic of Pediatric Neurology, A Meyer Children's Hospital, Florence, Italy [2] NeuroFarba Department, University of Florence, Florence, Italy.

PMID: 24166423 PMCID: PMC3817347 DOI: 10.1038/nutd.2013.33

Abstract

BACKGROUND: Children and adolescents with overt type 1 diabetes (T1D) have been found to show an altered carnitine profile. This pattern has not previously been analyzed in neonates before onset of the disease.

MATERIALS AND METHODS: Fifty children who developed T1D during the first 6 years of life, born and living in the Tuscany and Umbria Regions of Italy, were identified and 200 controls were recruited into the study. All newborns were subjected to extended neonatal screening by mass spectrometry at 48-72 h of life. Four controls for each of the 50 index cases were taken randomly and blinded in the same analytical batch. The panel used for neonatal screening consists of 13 amino acids, free carnitine, 33 acyl-carnitines and 21 ratios. All Guthrie cards are analyzed within 2 days of collection.

RESULTS: Total and free carnitine were found to be significantly lower in neonates who later developed T1D compared with controls. Moreover, the concentrations of the acyl-carnitines - acetyl-L-carnitine (C2), proprionylcarnitine (C3), 3-hydroxyisovalerylcarnitine (C5OH), miristoylcarnitine (C4), palmitoylcarnitine (C16) and stearoylcarnitine (C18) - were also significantly low in the cases vs controls. Furthermore, total amino-acid concentrations, expressed as the algebraic sum of all amino acids tested, showed a trend toward lower levels in cases vs controls.

CONCLUSIONS: We found that carnitine and amino-acid deficit may be evident before the clinical appearance of T1D, possibly from birth. The evaluation of these metabolites in the neonatal period of children human leukocyte antigen genetically at 'risk' to develop T1D, could represent an additional tool for the prediction of T1D and could also offer the possibility to design new strategies for the primary prevention of the disease from birth.

References

  1. Diabetes Care. 2012 Jan;35 Suppl 1:S64-71 - PubMed
  2. Rapid Commun Mass Spectrom. 2003;17(23):2688-92 - PubMed
  3. Semin Immunol. 2000 Jun;12(3):185-8; discussion 257-344 - PubMed
  4. J Anim Physiol Anim Nutr (Berl). 2006 Feb;90(1-2):81-6 - PubMed
  5. Endocr Res. 2004 Feb;30(1):107-16 - PubMed
  6. Orphanet J Rare Dis. 2012 Sep 18;7:68 - PubMed
  7. J Diabetes Complications. 2004 Sep-Oct;18(5):271-4 - PubMed
  8. Am J Clin Nutr. 2011 Dec;94(6 Suppl):1814S-1820S - PubMed
  9. J Pediatr. 2013 Mar;162(3):600-605.e1 - PubMed
  10. Mol Immunol. 2010 Jan;47(4):649-57 - PubMed
  11. Immunity. 2004 Dec;21(6):817-30 - PubMed
  12. Mini Rev Med Chem. 2009 Nov 1;9(13):1518-26 - PubMed
  13. Pancreas. 2006 Nov;33(4):403-11 - PubMed
  14. J Child Neurol. 1995 Nov;10 Suppl 2:S3-7 - PubMed
  15. J Pediatr Endocrinol Metab. 2002 Jun;15(6):841-9 - PubMed
  16. J Inherit Metab Dis. 2006 Oct;29(5):627-30 - PubMed
  17. Diabetes Metab Res Rev. 2011 Jan;27(1):3-13 - PubMed
  18. Nature. 2012 Sep 6;489(7414):52-5 - PubMed
  19. J Clin Chem Clin Biochem. 1990 May;28(5):297-301 - PubMed
  20. Nat Rev Immunol. 2011 Nov 11;11(12):823-36 - PubMed
  21. Immunity. 2006 Aug;25(2):261-70 - PubMed
  22. Mol Psychiatry. 2000 Nov;5(6):616-32 - PubMed
  23. FEBS Lett. 2000 Jul 28;478(1-2):19-25 - PubMed
  24. PLoS Genet. 2011 Sep;7(9):e1002300 - PubMed
  25. Cell. 1987 Apr 24;49(2):273-80 - PubMed
  26. Immunity. 2010 Apr 23;32(4):457-67 - PubMed
  27. Tissue Antigens. 1992 May;39(5):225-35 - PubMed
  28. Placenta. 2006 Aug;27(8):841-6 - PubMed
  29. Nature. 2011 Mar 31;471(7340):581-2 - PubMed
  30. Clin Exp Immunol. 2009 Apr;156(1):161-71 - PubMed
  31. Nature. 1994 Nov 3;372(6501):100-3 - PubMed
  32. J Exp Med. 2012 Mar 12;209(3):623-37 - PubMed
  33. Annu Rev Physiol. 2002;64:477-502 - PubMed
  34. J Allergy Clin Immunol. 2011 Jun;127(6):1394-9 - PubMed
  35. Clin Exp Immunol. 2010 Dec;162(3):407-14 - PubMed
  36. J Exp Med. 2005 Jul 4;202(1):33-45 - PubMed
  37. Cell Immunol. 2010;261(2):81-92 - PubMed
  38. Nat Genet. 2003 Mar;33 Suppl:245-54 - PubMed
  39. J Inherit Metab Dis. 2008 Dec;31 Suppl 2:S395-404 - PubMed
  40. J Exp Med. 1980 Apr 1;151(4):925-44 - PubMed
  41. Diabetes Care. 2012 Dec;35(12):2553-8 - PubMed
  42. Nature. 1988 Oct 20;335(6192):730-3 - PubMed
  43. Science. 1986 Apr 25;232(4749):508-11 - PubMed
  44. Adv Exp Med Biol. 2010;654:537-83 - PubMed
  45. Nat Immunol. 2001 Nov;2(11):1032-9 - PubMed
  46. Int Immunopharmacol. 2001 Sep;1(9-10):1813-22 - PubMed
  47. Nat Rev Immunol. 2009 Dec;9(12):833-44 - PubMed
  48. J Coll Physicians Surg Pak. 2013 Feb;23(2):132-6 - PubMed
  49. Epigenomics. 2011 Oct;3(5):639-48 - PubMed
  50. Nat Rev Immunol. 2008 Aug;8(8):607-18 - PubMed
  51. Ital J Pediatr. 2012 Mar 26;38:10 - PubMed
  52. Drugs Exp Clin Res. 2005;31(3):109-14 - PubMed
  53. Clin Chem. 2007 Jul;53(7):1364-9 - PubMed
  54. Semin Immunol. 2011 Dec;23(6):401-9 - PubMed
  55. Rapid Commun Mass Spectrom. 2008;22(6):812-8 - PubMed
  56. Acta Biomed. 2009;80(3):203-6 - PubMed
  57. J Immunol. 1984 Feb;132(2):718-24 - PubMed

Publication Types