Display options
Share it on

Microb Ecol. 1991 Dec;21(1):85-98. doi: 10.1007/BF02539146.

Cell-bound and extracellular phosphatase activities of cyanobacterial isolates.

Microbial ecology

B A Whitton, S L Grainger, G R Hawley, J W Simon

Affiliations

  1. Department of Biological Sciences, University of Durham, DH1 3LE, Durham, UK.

PMID: 24194203 DOI: 10.1007/BF02539146

Abstract

Fifty cyanobacterial strains (10 genera) were tested in batch culture for their ability to use organic phosphorus compounds (1 mg liter(-1) P) as their sole P source. Two monoesters, Na2-β-glycerophosphate and π-nitrophenyl phosphate (πNPP), supported growth of all strains, and the diester bis-π-nitrophenyl phosphate (bis-π-NPP) and herring sperm DNA supported almost all strains. ATP was either a very favorable or poor P source and failed to support growth of nine strains, seven of which were Rivulariaceae with trichomes ending in a hair or long tapered region. Phytic acid was in general the least favorable P source.P-limited cultures grown initially with inorganic phosphate to conditions of P limitation were also tested for cell-bound and extracellular phosphomonoesterase (PMEase) and phosphodiesterase (PDEase) activities at two pH values (7.6, 10.3) using πNPP and bis-πNPP as substrates. Cell-bound PMEase was inducible in all strains and cell-bound PDEase in most strains. Most showed extracellular PMEase, but not extracellular PDEase. The highest values (μM πNPP or bis-πNPP hydrolyzed mg dry weight(-1) hour(-1)) all occurred in strains ofGloeotrichia as follows: cell-bound PMEase at pH 7.6, 2.7 μM in strain D602; cell-bound PMEase at pH 10.3, 5.2 μM in D602; extracellular PMEase at pH 7.6, 0.73 μM in D281; extracellular PMEase at pH 10.3, 6.6 μM in D281; cell-bound PDEase at 7.6, 0.40 μM in D613; cell-bound PDEase at pH 10.3, 1.0 μM in D613.The results were compared to see if they indicated possible relationships between phosphatase activity and taxonomic or ecological grouping. The following differences were significant (P<0.05). Rivulariaceae produced higher yields than filamentous non-Rivulariaceae with β-glycerophosphate, πNPP, and DNA. Rivulariaceae with the ability to form hairs in culture showed poorer growth in ATP than non-hair-forming Rivulariaceae, but were more effective at utilizing phytic acid. Strains from calcareous environments had higher PMEase activity at pH 10.3 than strains from noncalcareous environments (P<0.01).

References

  1. Microbios. 1980;29(117-118):185-207 - PubMed
  2. Microbios. 1989;59(238):7-17 - PubMed
  3. Annu Rev Microbiol. 1982;36:435-65 - PubMed
  4. J Bacteriol. 1977 Dec;132(3):967-73 - PubMed
  5. J Bacteriol. 1977 Jan;129(1):501-15 - PubMed
  6. Biochem Biophys Res Commun. 1961 Jun 2;5:104-8 - PubMed

Publication Types