Display options
Share it on

Acta Histochem Cytochem. 2013 Oct 30;46(5):137-43. doi: 10.1267/ahc.13007. Epub 2013 Oct 23.

Differential increases in the expression of intermediate filament proteins and concomitant morphological changes of transdifferentiating rat hepatic stellate cells observed in vitro.

Acta histochemica et cytochemica

Yoshihiro Mezaki, Mayako Morii, Taku Hebiguchi, Kiwamu Yoshikawa, Noriko Yamaguchi, Mitsutaka Miura, Katsuyuki Imai, Hiroaki Yoshino, Haruki Senoo

Affiliations

  1. Department of Cell Biology and Morphology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan.

PMID: 24194627 PMCID: PMC3813821 DOI: 10.1267/ahc.13007

Abstract

The primary function of hepatic stellate cells (HSCs) is the storage of vitamin A. However, they are also responsible for liver fibrosis and are therapeutic targets for treatment of liver cirrhosis. Among the many molecular markers that define quiescent or activated states of HSCs, the characteristics of type III intermediate filaments are of particular interest. Whereas vimentin and desmin are upregulated in activated HSCs, glial fibrillary acidic protein is downregulated in activated HSCs. The functional differences between vimentin and desmin are poorly understood. By time-course quantifications of several molecular markers for HSC activation, we observed that the expression of vimentin preceded that of desmin during the transdifferentiation of HSCs. The immunoreactivity of vimentin in transdifferentiated HSCs was more intense in perinuclear regions compared to that of desmin. We propose that the delayed expression of desmin following the expression of vimentin and the peripheral localization of desmin compared to vimentin are both related to the more extended phenotype of transdifferentiating HSCs observed in vitro.

Keywords: desmin; hepatic stellate cell; intermediate filament; myofibroblast; vimentin

References

  1. Hepatology. 2001 Jan;33(1):177-88 - PubMed
  2. Hepatology. 1996 Jun;23(6):1538-45 - PubMed
  3. Biochem J. 1992 Jul 15;285 ( Pt 2):367-71 - PubMed
  4. Nat Rev Gastroenterol Hepatol. 2010 Aug;7(8):425-36 - PubMed
  5. J Histochem Cytochem. 2009 Jul;57(7):687-99 - PubMed
  6. Hepatology. 1984 Jul-Aug;4(4):709-14 - PubMed
  7. J Clin Invest. 1989 Dec;84(6):1786-93 - PubMed
  8. Hepatology. 1994 Feb;19(2):440-6 - PubMed
  9. J Cell Physiol. 2010 Jun;223(3):648-57 - PubMed
  10. Proc Natl Acad Sci U S A. 1979 Aug;76(8):3894-8 - PubMed
  11. J Neuroimmunol. 1985 Jun;8(4-6):359-75 - PubMed
  12. Annu Rev Biochem. 1982;51:219-50 - PubMed
  13. J Cell Biol. 1968 Sep;38(3):538-55 - PubMed
  14. Hepatology. 1984 May-Jun;4(3):392-403 - PubMed
  15. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8681-5 - PubMed
  16. J Biol Chem. 2000 Jan 28;275(4):2247-50 - PubMed
  17. Trends Cell Biol. 2008 Jan;18(1):28-37 - PubMed
  18. Hepatology. 1999 Feb;29(2):520-7 - PubMed
  19. Int Rev Cytol. 1980;66:303-53 - PubMed
  20. Genes Dev. 2007 Jul 1;21(13):1581-97 - PubMed
  21. Cell Tissue Res. 1993 Aug;273(2):227-37 - PubMed
  22. Virchows Arch B Cell Pathol Incl Mol Pathol. 1988;56(1):45-9 - PubMed
  23. Arch Biochem Biophys. 2007 Sep 15;465(2):370-9 - PubMed
  24. PLoS One. 2011;6(9):e24993 - PubMed

Publication Types