Display options
Share it on

Mob DNA. 2013 Nov 06;4(1):24. doi: 10.1186/1759-8753-4-24.

A proposed mechanism for IS607-family serine transposases.

Mobile DNA

Martin R Boocock, Phoebe A Rice

Affiliations

  1. Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA. [email protected].

PMID: 24195768 PMCID: PMC4058570 DOI: 10.1186/1759-8753-4-24

Abstract

BACKGROUND: The transposases encoded by the IS607 family of mobile elements are unusual serine recombinases with an inverted domain order and minimal specificity for target DNA.

RESULTS: Structural genomics groups have determined three crystal structures of the catalytic domains of IS607 family transposases. The dimers formed by these catalytic domains are very different from those seen for other serine recombinases and include interactions that usually only occur upon formation of a synaptic tetramer.

CONCLUSIONS: Based on these structures, we propose a model for how IS607-family transposases could form a synaptic tetramer. The model suggests that, unlike other serine recombinases, these enzymes carry out sequence-specific DNA binding and catalysis in trans: the DNA binding and catalytic domains of each subunit are proposed to interact with different DNA duplexes. The model also suggests an explanation for the minimal target DNA specificity.

References

  1. Structure. 1994 May 15;2(5):371-84 - PubMed
  2. Mob DNA. 2013 Apr 01;4(1):12 - PubMed
  3. Annu Rev Biochem. 1989;58:913-49 - PubMed
  4. Mol Cell. 2008 Apr 25;30(2):145-55 - PubMed
  5. Q Rev Biophys. 2012 Nov;45(4):493-521 - PubMed
  6. Biochem Soc Trans. 2010 Apr;38(2):388-94 - PubMed
  7. Cold Spring Harb Symp Quant Biol. 1984;49:227-33 - PubMed
  8. Annu Rev Biochem. 2006;75:567-605 - PubMed
  9. Cell. 1990 Dec 21;63(6):1323-9 - PubMed
  10. Science. 1985 Jul 12;229(4709):171-4 - PubMed
  11. Mol Cell. 2005 Oct 7;20(1):143-54 - PubMed
  12. Mol Microbiol. 2013 Apr;88(2):443-55 - PubMed
  13. EMBO J. 1995 Oct 16;14(20):5129-40 - PubMed
  14. Nat Protoc. 2009;4(3):363-71 - PubMed
  15. Cell. 1989 Aug 25;58(4):779-90 - PubMed
  16. Nucleic Acids Res. 2009 Aug;37(14):4743-56 - PubMed
  17. Science. 2005 Aug 19;309(5738):1210-5 - PubMed
  18. Genome Biol Evol. 2013;5(5):822-32 - PubMed
  19. Microbiol Mol Biol Rev. 2007 Mar;71(1):121-57 - PubMed
  20. Mol Microbiol. 2009 Oct;74(2):282-98 - PubMed
  21. Mol Cell. 2009 Jun 26;34(6):746-59 - PubMed
  22. J Bacteriol. 2004 Nov;186(22):7521-8 - PubMed
  23. PLoS One. 2009 Aug 05;4(8):e6515 - PubMed
  24. J Mol Biol. 2010 Nov 19;404(1):16-33 - PubMed
  25. Proc Natl Acad Sci U S A. 2008 Mar 18;105(11):4121-6 - PubMed
  26. Biochem Soc Trans. 2011 Apr;39(2):617-22 - PubMed
  27. J Mol Biol. 1996 Jul 19;260(3):299-303 - PubMed
  28. Nucleic Acids Res. 2013 Sep;41(17):8341-56 - PubMed
  29. Nucleic Acids Res. 2013 Feb 1;41(4):2673-82 - PubMed
  30. Structure. 2011 Jun 8;19(6):799-809 - PubMed
  31. Proc Natl Acad Sci U S A. 2006 Jul 11;103(28):10642-7 - PubMed
  32. Cell. 1995 Jul 28;82(2):193-207 - PubMed
  33. Structure. 2008 Aug 6;16(8):1275-86 - PubMed
  34. Microbiology (Reading). 1999 Apr;145 ( Pt 4):881-892 - PubMed
  35. Genes Dev. 1991 Sep;5(9):1622-34 - PubMed
  36. Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W321-6 - PubMed
  37. J Bacteriol. 2000 Oct;182(19):5300-8 - PubMed
  38. Mol Microbiol. 2005 Jan;55(1):312-25 - PubMed
  39. Nucleic Acids Res. 2006 Jan 1;34(Database issue):D32-6 - PubMed
  40. Cold Spring Harb Symp Quant Biol. 1984;49:383-400 - PubMed

Publication Types

Grant support