Display options
Share it on

Mech Mater. 2012 Jan;44. doi: 10.1016/j.mechmat.2011.08.005.

Bi-material attachment through a compliant interfacial system at the tendon-to-bone insertion site.

Mechanics of materials : an international journal

Y X Liu, S Thomopoulos, V Birman, J-S Li, G M Genin

Affiliations

  1. Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO 63130, USA.

PMID: 24285911 PMCID: PMC3839427 DOI: 10.1016/j.mechmat.2011.08.005

Abstract

The attachment of tendon to bone, one of the greatest interfacial material mismatches in nature, presents an anomaly from the perspective of interfacial engineering. Deleterious stress concentrations arising at bi-material interfaces can be reduced in engineering practice by smooth interpolation of composition, microstructure, and mechanical properties. However, following normal development, the rotator cuff tendon-to-bone "insertion site" presents an interfacial zone that is more compliant than either tendon or bone. This compliant zone is not regenerated following healing, and its absence may account for the poor outcomes observed following both natural and post-surgical healing of insertion sites such as those at the rotator cuff of the shoulder. Here, we present results of numerical simulations which provide a rationale for such a seemingly illogical yet effective interfacial system. Through numerical optimization of a mathematical model of an insertion site, we show that stress concentrations can be reduced by a biomimetic grading of material properties. Our results suggest a new approach to functional grading for minimization of stress concentrations at interfaces.

Keywords: Enthesis; Material optimization; Stress concentrations; Tendon-to-bone attachment

References

  1. Small. 2011 Feb 7;7(3):293-7 - PubMed
  2. Nanoscale. 2010 Jun;2(6):923-6 - PubMed
  3. Biophys J. 2005 Feb;88(2):765-77 - PubMed
  4. Int J Solids Struct. 2009 May 15;46(10):2136-2150 - PubMed
  5. Nano Lett. 2009 Jul;9(7):2763-8 - PubMed
  6. J Biomech Eng. 2003 Oct;125(5):726-31 - PubMed
  7. Orthop Clin North Am. 1997 Jan;28(1):1-16 - PubMed
  8. Phys Rev Lett. 1994 May 30;72(22):3570-3573 - PubMed
  9. J Biomech. 1995 Feb;28(2):147-57 - PubMed
  10. Nat Mater. 2009 Mar;8(3):175-88 - PubMed
  11. J Eng Mater Technol. 2011 Jan 1;133(1): - PubMed
  12. Biophys J. 2005 Feb;88(2):778-89 - PubMed
  13. Philos Trans A Math Phys Eng Sci. 2010 Feb 13;368(1912):635-54 - PubMed
  14. J Biomech Eng. 1985 May;107(2):158-65 - PubMed
  15. J Biomech. 2006;39(10):1842-51 - PubMed
  16. J Orthop Res. 2007 Sep;25(9):1154-63 - PubMed
  17. J Am Acad Orthop Surg. 2006 Jun;14(6):333-46 - PubMed
  18. Nat Mater. 2005 Aug;4(8):612-6 - PubMed
  19. PLoS One. 2009 Jun 23;4(6):e6015 - PubMed
  20. J Bone Joint Surg Am. 2004 Feb;86(2):219-24 - PubMed
  21. Biophys J. 2009 Aug 19;97(4):976-85 - PubMed
  22. J Musculoskelet Neuronal Interact. 2010 Mar;10(1):35-45 - PubMed
  23. J Orthop Res. 2004 May;22(3):607-12 - PubMed
  24. Nat Mater. 2007 Jun;6(6):454-62 - PubMed
  25. J Biomech. 2007;40(14):3070-8 - PubMed
  26. Comput Methods Biomech Biomed Engin. 2008 Dec;11(6):595-607 - PubMed
  27. Comp Biochem Physiol A Mol Integr Physiol. 2002 Dec;133(4):931-45 - PubMed
  28. Tissue Eng Part A. 2011 Apr;17(7-8):1039-53 - PubMed
  29. J Orthop Res. 2011 Feb;29(2):281-8 - PubMed
  30. J Biomech. 2007;40(12):2655-62 - PubMed
  31. J Orthop Res. 2003 May;21(3):413-9 - PubMed
  32. Ann Biomed Eng. 2003 Nov;31(10):1287-96 - PubMed
  33. J Anat. 2003 Aug;203(2):191-202 - PubMed
  34. Appl Spectrosc. 2008 Dec;62(12):1285-94 - PubMed
  35. Proc Natl Acad Sci U S A. 2008 Jun 10;105(23):7947-52 - PubMed
  36. Ann Biomed Eng. 2006 Sep;34(9):1475-82 - PubMed

Publication Types

Grant support