Display options
Share it on

J Chem Ecol. 1995 Oct;21(10):1511-30. doi: 10.1007/BF02035149.

Foliar oxidative stress and insect herbivory: Primary compounds, secondary metabolites, and reactive oxygen species as components of induced resistance.

Journal of chemical ecology

J L Bi, G W Felton

Affiliations

  1. Department of Entomology, University of Arkansas, 72701, Fayetteville, Arkansas.

PMID: 24233680 DOI: 10.1007/BF02035149

Abstract

Oxidative responses of plants to pathogens and other environmental stresses have received considerable recent attention. We propose that an oxidative response also occurs following attack by herbivores. Our data strongly indicate a shift in the oxidative status of soybean following herbivory by the insectHelicoverpa zea. Herbivory caused significant increases in lipid peroxidation and ·OH radical formation. The activity of several oxidative enzymes including lipoxygenases, peroxidase, diamine oxidase, ascorbate oxidase, and NADH oxidase I increased after herbivory on soybean. The enhanced production of phenolic compounds is indicated by an increase in the activity of phenylalanine ammonia lyase in wounded tissues. On the other hand, the level of soybean foliar antioxidants such as ascorbic acid, total carotenoids, nonprotein thiols, and catalase decreased significantly following herbivory. These results implicate primary compounds (e.g., ascorbic acid, proteins), secondary metabolites (e.g., phenolics), and reactive oxygen species (e.g., hydroxyl radical, hydrogen peroxide) as multiple components of induced resistance. The oxidative changes in the host plant correspond with increased oxidative damage in the midgut of insects feeding on previously wounded plants. Decreases in nonprotein thiols and reduced ascorbic acid occurred in midgut epithelial tissue from insects feeding on wounded plants compared to the insects on control plants. In contrast, midgut hydroperoxides and dehydroascorbic acid concentrations were greater in insects on wounded plants compared to their counterparts on control plants. We conclude that oxidative responses in soybean may have both positive and negative effects upon the host plant: a decrease in herbivory and an increase in oxidative damage to the plant. The salient benefit to the plant, in terms of insect resistance, is the relative balance between these opposing effects.

References

  1. Plant Physiol. 1992 Nov;100(3):1479-85 - PubMed
  2. Annu Rev Entomol. 1973;18:381-420 - PubMed
  3. Plant Physiol. 1992 Nov;100(3):1189-95 - PubMed
  4. J Chem Ecol. 1994 Aug;20(8):1985-2001 - PubMed
  5. J Chem Ecol. 1994 Mar;20(3):651-66 - PubMed
  6. J Insect Physiol. 1970 Jun;16(6):1057-68 - PubMed
  7. Free Radic Biol Med. 1994 Mar;16(3):331-8 - PubMed
  8. J Bioenerg Biomembr. 1991 Jun;23(3):409-23 - PubMed
  9. Cell. 1992 Jul 10;70(1):21-30 - PubMed
  10. Anal Biochem. 1975 Aug;67(2):493-502 - PubMed
  11. Proc Natl Acad Sci U S A. 1993 Feb 15;90(4):1629-33 - PubMed
  12. Plant Physiol. 1991 Aug;96(4):1314-20 - PubMed
  13. Plant Cell. 1994 Jan;6(1):65-74 - PubMed
  14. Arch Biochem Biophys. 1991 Oct;290(1):153-9 - PubMed
  15. Arch Biochem Biophys. 1985 Aug 1;240(2):539-45 - PubMed
  16. Plant Physiol. 1992 Mar;98(3):995-1002 - PubMed
  17. Cell. 1992 Sep 18;70(6):879-86 - PubMed
  18. Biochem J. 1983 Mar 15;210(3):899-903 - PubMed
  19. Science. 1988 Apr 29;240(4852):640-2 - PubMed
  20. J Chem Ecol. 1994 Mar;20(3):639-50 - PubMed
  21. J Chem Ecol. 1994 Jan;20(1):183-98 - PubMed
  22. Lipids. 1991 Oct;26(10):853-6 - PubMed
  23. Plant Physiol. 1986 Jun;81(2):487-92 - PubMed
  24. J Chem Ecol. 1993 Jul;19(7):1521-52 - PubMed
  25. Plant Physiol. 1994 Jun;105(2):467-472 - PubMed
  26. Science. 1994 Feb 25;263(5150):1128-30 - PubMed
  27. J Biol Chem. 1986 Jan 25;261(3):1099-104 - PubMed
  28. Science. 1978 Sep 8;201(4359):875-80 - PubMed
  29. Planta. 1990 Aug;182(1):89-96 - PubMed
  30. Science. 1993 Dec 17;262(5141):1883-6 - PubMed
  31. Plant Physiol. 1989 May;90(1):109-16 - PubMed
  32. Planta. 1988 Mar;173(3):317-21 - PubMed
  33. Planta. 1986 Feb;167(2):300-2 - PubMed
  34. J Chem Ecol. 1990 Oct;16(10):2913-24 - PubMed
  35. Plant Physiol. 1989 Aug;90(4):1267-70 - PubMed
  36. Anal Biochem. 1992 May 1;202(2):384-9 - PubMed
  37. Plant Physiol. 1994 Mar;104(3):945-952 - PubMed
  38. J Chem Ecol. 1993 Jul;19(7):1553-68 - PubMed
  39. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7542-6 - PubMed
  40. Arch Insect Biochem Physiol. 1995;29(2):187-97 - PubMed
  41. J Chem Ecol. 1989 Dec;15(12):2667-94 - PubMed
  42. Methods Enzymol. 1984;105:121-6 - PubMed
  43. Plant Physiol. 1985 Sep;79(1):62-4 - PubMed
  44. Plant Physiol. 1980 Aug;66(2):246-9 - PubMed
  45. Proc Natl Acad Sci U S A. 1992 Jun 1;89(11):4938-41 - PubMed
  46. Physiol Rev. 1994 Jan;74(1):139-62 - PubMed
  47. Plant Physiol. 1991 Apr;95(4):1214-8 - PubMed
  48. Biochim Biophys Acta. 1992 Nov 11;1165(1):1-18 - PubMed
  49. Methods Enzymol. 1994;233:380-5 - PubMed
  50. Plant Physiol. 1991 Nov;97(3):962-8 - PubMed
  51. Plant Physiol. 1991 Aug;96(4):1157-60 - PubMed

Publication Types