Display options
Share it on

Planta. 1983 Apr;157(5):454-61. doi: 10.1007/BF00397203.

Incorporation of fucose into the carbohydrate moiety of phytohemagglutinin in developing Phaseolus vulgaris cotyledons.

Planta

M J Chrispeels

Affiliations

  1. Department of Biology, C-016, University of California/San Diego, 92093, La Jolla, CA, USA.

PMID: 24264342 DOI: 10.1007/BF00397203

Abstract

Incubation of developing cotyledons of P. vulgaris with [(3)H]fucose resulted in the incorporation of radioactivity into the cell wall, membranous organelles and soluble macromolecules. Fractionation of the proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, followed by fluorography, showed that phytohemagglutinin (PHA) was the major fucosylated protein synthesized in the cotyledons. Incorporation of fucose into PHA occurred in the membranous organelle fraction, and the radioactive fucose remained associated with the PHA during a 20-h chase of the radioactivity. Tunicamycin inhibited the incorporation of glucosamine and fucose into PHA to the same extent (65%), indicating the involvement of a lipid intermediate in the incorporation of fucose, or the attachment of fucose to the high-mannose oligosaccharide moiety of newly synthesized PHA. Digestion with proteinase K of [(3)H]fucose- or [(3)H]glucosamine-labeled PHA resulted in the formation of glycopeptides of similar size. These glycopeptides were partially resistant to digestion with endo-β-N-acetylglucosaminidase H, even after the removal of fucose by mild acid hydrolysis. We postulate, on the basis of these experiments, that the transport of PHA from the endoplasmic reticulum to the protein bodies is accompanied by the modification of its oligosaccharide side-chain. This modification involves inter alia the attachment of fucose, and renders the oligosaccharide side-chain resistant to digestion with endo-β-N-acetylglucosaminidase H. Analogy with animal glycoproteins indicates that this modification probably occurs in the Golgi apparatus.

References

  1. Plant Physiol. 1980 Sep;66(3):510-5 - PubMed
  2. J Biol Chem. 1977 May 10;252(9):2961-6 - PubMed
  3. Plant Physiol. 1981 Aug;68(2):284-91 - PubMed
  4. Eur J Biochem. 1974 Jul 1;46(1):83-8 - PubMed
  5. Plant Physiol. 1978 Jan;61(1):25-9 - PubMed
  6. Cell. 1980 Dec;22(3):709-17 - PubMed
  7. Plant Physiol. 1977 Mar;59(3):341-7 - PubMed
  8. Methods Enzymol. 1982;83:105-26 - PubMed
  9. Planta. 1978 Jan;142(3):291-8 - PubMed
  10. Planta. 1981 Nov;153(3):201-9 - PubMed
  11. Biochem J. 1980 Oct 1;191(1):257-60 - PubMed
  12. Annu Rev Biochem. 1981;50:555-83 - PubMed
  13. Proc Natl Acad Sci U S A. 1969 Jun;63(2):334-41 - PubMed
  14. Plant Physiol. 1977 Nov;60(5):703-8 - PubMed
  15. J Biochem. 1974 Aug;76(2):307-17 - PubMed
  16. Planta. 1979 Sep;146(4):487-501 - PubMed
  17. Plant Physiol. 1979 Dec;64(6):909-13 - PubMed
  18. Planta. 1979 Sep;146(4):513-20 - PubMed
  19. Biochem J. 1977 Jan 1;161(1):93-101 - PubMed
  20. J Biol Chem. 1975 Dec 25;250(24):9283-93 - PubMed
  21. Eur J Biochem. 1973 Sep 21;38(1):193-200 - PubMed
  22. Plant Physiol. 1982 Nov;70(5):1425-8 - PubMed
  23. Arch Biochem Biophys. 1982 Apr 15;215(1):12-21 - PubMed
  24. Arch Biochem Biophys. 1975 Jul;169(1):269-77 - PubMed
  25. J Biol Chem. 1979 Nov 10;254(21):10715-9 - PubMed
  26. J Cell Biol. 1982 Apr;93(1):5-14 - PubMed
  27. J Biol Chem. 1974 Feb 10;249(3):818-24 - PubMed
  28. Plant Physiol. 1980 Dec;66(6):1113-8 - PubMed
  29. Biochem Biophys Res Commun. 1975 Nov 3;67(1):455-62 - PubMed
  30. J Biol Chem. 1977 Nov 10;252(21):7431-3 - PubMed
  31. Science. 1973 Oct 19;182(4109):287-91 - PubMed
  32. Biochim Biophys Acta. 1975 Sep 9;405(1):72-81 - PubMed
  33. Biochem Biophys Res Commun. 1975 Jul 8;65(1):248-57 - PubMed

Publication Types