Display options
Share it on

Environ Monit Assess. 1995 Jan;34(1):73-102. doi: 10.1007/BF00546247.

Assessing environmental soil quality in rural areas : A base line study in the province of Zeeland, the Netherlands and reflections on soil monitoring network designs.

Environmental monitoring and assessment

P F van Gaans, S P Vriend, S Bleyerveld, G Schrage, A Vos

Affiliations

  1. Department of Physical Geography, Utrecht University, P.O. Box 80.115, 3508 TA, Utrecht, the Netherlands.

PMID: 24201909 DOI: 10.1007/BF00546247

Abstract

A base line study into the environmental quality of soils in the rural areas of the province of Zeeland, the Netherlands, was performed. The polder-landscape in this area was developed in a complex history of floodings and land-reclamation. Samples from 67 sites, at a density of roughly one per 25 km(2), were analyzed for As, Cd, Cr, Cu, Hg, Ni, Pb and Zn in addition to a physicochemical characterization by pH(KCl), dry solids, organic matter, and clay content. At about 2/3 of the sites samples were taken at more than one depth. Fluoride and pesticides were determined in partly overlapping selections of 30 samples. Four land use classes were distinguished (arable land, grass land, orchards, uncultivated), and samples were labelled by region within the province. Data evaluation was aided by a recursive statistical approach, whereby statistical tests confirm and strengthen geochemical reasoning. Single- and multivariate statistics were used both as exploratory tools and as a measure of significance and relevance of conditions and processes. In general the environmental quality of the soils is satisfactory. Exceedence of the legal standards for natural background values at more than one site occurs for Cd, Cu, Hg and the pesticides DDT/DDE, dieldrin and HCH, at most by a factor of three. High levels of Hg appear related to arable land use; enhanced levels of Cu are found in orchards. High Cd levels primarily seem to follow a regional or geological pattern; yet, a relation with arable land use and clayey soils cannot be excluded. Pesticides are not detected in grass land, incidence is highest in orchards as well as in uncultivated areas. DDT levels appear to be generally inherited from the past. Variation in soil type as described by the macro physico-chemical characteristics is essential in explaining the variation in concentration level of the potential contaminants. Variations with depth also appear largely related to concurrent variation in soil properties. For As redox conditions and hydrological regime seem of importance, in addition to the geologic history. The influence of atmospheric input is inferred for Pb. The available data do not fully resolve the causes for the regional pattern that remains when the influences of soil type, geology, and land use have been taken into account. In addition to current concentration levels, the base line study offers general insight as to what degree variations in potential contaminants are of natural or anthropogenic origin. A succession of similar studies at suitable time intervals, each with a new selection of sampling sites, may constitute an evolving, flexible monitoring system. When putting up a monitoring system, authorities should weigh the advantages and disadvantages of a network composed of fixed sites against this alternative.

Publication Types