Display options
Share it on

Plant Mol Biol. 1985 Jan;4(1):39-54. doi: 10.1007/BF02498714.

Multiple transcripts for higher plantrbcL andatpB genes and localization of the transcription initiation site of therbcL gene.

Plant molecular biology

J E Mullet, E M Orozco, N H Chua

Affiliations

  1. Laboratory of Plant Molecular Biology, The Rockefeller University, 1230 York Avenue, 10021-6399, New York, NY, USA.

PMID: 24310655 DOI: 10.1007/BF02498714

Abstract

We have compared therbcL andatpB transcription units from spinach, maize, and pea. In most cases multiple transcripts were found for a given chloroplast gene. The 5' termini of these transcripts were determined by S1 nuclease protection and primer extension analyses. TherbcL transcripts have 5' termini 178-179 and 64 nucleotides (spinach), 300 and 59-63 nucleotides (maize), and 178 and 65 nucleotides (pea) upstream from their respective protein coding regions. TheatpB transcripts have 5' termini (453-454, 272-273, 179, and 99 nucleotides (spinach), 298-302 nucleotides (maize), and 351-355 nucleotides (pea) upstream from their respective protein coding regions. The intergenic distance between therbcL andatpB genes is relatively constant (152 to 157 base pairs) among the three chloroplast genomes. In spinach, maize, and pea, the 80 base pairs surrounding the 5' end of therbcL gene (±40 base pairs) have 85% sequence homology. Similarly, the 60 base pairs preceding theatpB gene have 48% sequence homology. Both genes have '-10' and '-35' regions that resemble the prokaryotic consensus promoter sequence. The larger, but not smaller,rbcL transcripts from spinach and pea can be labeled with alpha-(32)P-GTP by guanylyltransferase. These data suggest that DNA sequences 178-179 (spinach), 300 (maize), and 178 (pea) base pairs before therbcL protein coding regions represent sites of transcription initiation. The sequences 59-65 base pairs before therbcL protein coding regions may correspond to sites of RNA cleavage.

References

  1. Cell. 1978 Nov;15(3):725-31 - PubMed
  2. Proc Natl Acad Sci U S A. 1983 Sep;80(18):5564-8 - PubMed
  3. Cell. 1979 Oct;18(2):485-99 - PubMed
  4. Plant Physiol. 1980 Apr;65(4):641-7 - PubMed
  5. Nucleic Acids Res. 1981 Jul 24;9(14):3251-70 - PubMed
  6. Plant Physiol. 1976 Sep;58(3):345-9 - PubMed
  7. Gene. 1982 Oct;19(3):259-68 - PubMed
  8. J Cell Biol. 1975 Mar;64(3):572-85 - PubMed
  9. Gene. 1982 Nov;20(1):91-102 - PubMed
  10. J Mol Appl Genet. 1981;1(2):127-37 - PubMed
  11. J Mol Biol. 1970 Jun 28;50(3):671-87 - PubMed
  12. Nucleic Acids Res. 1982 Aug 25;10(16):4985-5002 - PubMed
  13. Arch Biochem Biophys. 1978 Mar;186(2):283-91 - PubMed
  14. Gene. 1983 Oct;24(2-3):147-55 - PubMed
  15. Plant Mol Biol. 1984 Nov;3(6):431-44 - PubMed
  16. Cell. 1977 Nov;12(3):847-54 - PubMed
  17. Methods Enzymol. 1980;65(1):499-560 - PubMed
  18. Nucleic Acids Res. 1979 Nov 10;7(5):1175-93 - PubMed
  19. J Biol Chem. 1981 May 25;256(10):5226-32 - PubMed
  20. Plant Physiol. 1976 May;57(5):730-3 - PubMed
  21. Eur J Biochem. 1979 Feb 15;94(1):165-77 - PubMed
  22. Genetics. 1984 Apr;106(4):735-49 - PubMed
  23. Nature. 1983 Apr 28;302(5911):800-4 - PubMed
  24. Science. 1976 Feb 6;191(4226):429-34 - PubMed
  25. Nucleic Acids Res. 1982 Nov 11;10(21):6819-32 - PubMed
  26. Nucleic Acids Res. 1982 Aug 25;10(16):4923-34 - PubMed
  27. Cell. 1981 Dec;27(3 Pt 2):603-13 - PubMed
  28. Annu Rev Genet. 1979;13:319-53 - PubMed
  29. Biochem Biophys Res Commun. 1977 Jan 24;74(2):374-83 - PubMed
  30. Proc Natl Acad Sci U S A. 1982 Oct;79(20):6260-4 - PubMed
  31. Plant Mol Biol. 1983 Sep;2(5):279-90 - PubMed
  32. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463-7 - PubMed
  33. FEBS Lett. 1982 Jul 19;144(1):73-6 - PubMed
  34. J Biol Chem. 1980 Nov 25;255(22):10991-6 - PubMed
  35. Gene. 1983 Nov;25(2-3):271-80 - PubMed
  36. J Biol Chem. 1981 Mar 10;256(5):2315-20 - PubMed
  37. Planta. 1978 Jan;142(1):75-82 - PubMed
  38. Eur J Biochem. 1981 Jan;113(3):581-6 - PubMed

Publication Types