Display options
Share it on

J Fluoresc. 1991 Sep;1(3):163-76. doi: 10.1007/BF00865363.

Conformational differences of oxytocin and vasopressin as observed by fluorescence anisotropy decays and transient effects in collisional quenching of tyrosine fluorescence.

Journal of fluorescence

I Gryczynski, H Szmacinski, G Laczko, W Wiczk, M L Johnson, J Kusba, J R Lakowicz

Affiliations

  1. Center for the Fluorescence Spectroscopy and Department of Biological Chemistry, University of Maryland, School of Medicine, 660 West Redwood Street, 21201, Baltimore, Maryland.

PMID: 24242994 DOI: 10.1007/BF00865363

Abstract

We used gigahertz frequency-domain fluorometry to examine the tyrosyl fluorescence intensity and anisotropy decays of the single-tyrosine cyclic peptide hormones oxytocin and vasopressin. Acrylamide quenching and a distance-dependent quenching model for collisional quenching were used to evaluate the extent of tyrosyl exposure to the quencher and to provide increased resolution of the picosecond anisotropy decays. Analysis of the intensity decays using a lifetime distribution model shows different distributions for oxytocin and vasopressin. We found that the tyrosyl fluorescence of lysine-vasopressin, as revealed both by the lifetime Stern-Volmer plots and from the quenching analysis, is quenched more effectively than oxytocin. ForN-acetyltyrosinamide (NATyrA), oxytocin, and lysine-vasopressin, we recovered apparent diffusion coefficients for quenching of 4.7×10(-6), 0.44×10(-6), and 4.3×10(-6) cm(2)/s, respectively, the lower value for oxytocin suggesting a shielded environment for its tyrosyl residue. Tyrosyl anisotropy decays were recovered by global analysis of progressively quenched samples. Compared with oxytocin, vasopressin displayed a longer correlation time for overall rotational diffusion and a higher amplitude for picosecond segmented motions of its tyrosyl residue. All the data are consistent with a more extended and flexible solution structure for vasopressin than for oxytocin.

References

  1. Biochemistry. 1987 Jan 13;26(1):82-90 - PubMed
  2. Biochemistry. 1986 Feb 11;25(3):599-607 - PubMed
  3. Biophys J. 1987 May;51(5):755-68 - PubMed
  4. Biochem Biophys Res Commun. 1990 Sep 28;171(3):996-1001 - PubMed
  5. Science. 1986 Jun 6;232(4755):1240-2 - PubMed
  6. Biophys J. 1983 Dec;44(3):315-24 - PubMed
  7. Biochim Biophys Acta. 1987 Dec 18;916(3):343-9 - PubMed
  8. Biochim Biophys Acta. 1981 Jan 30;667(1):35-43 - PubMed
  9. Biochemistry. 1986 Feb 11;25(3):607-12 - PubMed
  10. Photochem Photobiol. 1986 Sep;44(3):365-70 - PubMed
  11. Biochim Biophys Acta. 1986 Sep 26;873(2):161-72 - PubMed
  12. Proc Natl Acad Sci U S A. 1971 May;68(5):956-8 - PubMed
  13. Biophys Chem. 1985 Jan;21(1):61-78 - PubMed
  14. Biopolymers. 1988 Jun;27(6):939-56 - PubMed
  15. Biophys Chem. 1986 Jul;24(2):97-100 - PubMed
  16. Biophys Chem. 1987 Oct;28(1):35-50 - PubMed
  17. Biophys J. 1987 Jun;51(6):925-36 - PubMed
  18. Biophys J. 1984 Oct;46(4):463-77 - PubMed
  19. Photochem Photobiol. 1983 Sep;38(3):373-6 - PubMed
  20. Biophys J. 1987 Apr;51(4):587-96 - PubMed
  21. Biophys Chem. 1988 May;30(1):49-59 - PubMed
  22. Biochemistry. 1977 Dec 13;16(25):5546-51 - PubMed
  23. Anal Biochem. 1981 Jul 1;114(2):199-227 - PubMed
  24. J Biol Chem. 1987 Aug 15;262(23):10907-10 - PubMed
  25. Biochem Biophys Res Commun. 1970 Jul 13;40(1):179-85 - PubMed
  26. Biochemistry. 1964 Jun;3:764-9 - PubMed
  27. Proc Natl Acad Sci U S A. 1972 Sep;69(9):2566-9 - PubMed
  28. J Mol Biol. 1973 Sep 25;79(3):555-75 - PubMed
  29. J Am Chem Soc. 1974 Apr 3;96(7):2289-91 - PubMed
  30. J Biochem Biophys Methods. 1983 May;7(3):243-54 - PubMed
  31. Biochim Biophys Acta. 1988 Jun 13;954(3):244-52 - PubMed
  32. Science. 1985 Mar 15;227(4692):1309-15 - PubMed
  33. Proc Natl Acad Sci U S A. 1972 Jul;69(7):1920-4 - PubMed
  34. Science. 1986 May 2;232(4750):633-6 - PubMed
  35. Fed Proc. 1977 May;36(6):1872-8 - PubMed

Publication Types