Display options
Share it on

J Fluid Mech. 2013 Feb 01;716. doi: 10.1017/jfm.2012.526.

Modelling single- and tandem-bubble dynamics between two parallel plates for biomedical applications.

Journal of fluid mechanics

C-T Hsiao, J-K Choi, S Singh, G L Chahine, T A Hay, Yu A Ilinskii, E A Zabolotskaya, M F Hamilton, G Sankin, F Yuan, P Zhong

Affiliations

  1. Dynaflow, Inc., 10621-J Iron Bridge Rd., Jessup, MD 20794, USA.

PMID: 24293683 PMCID: PMC3843546 DOI: 10.1017/jfm.2012.526

Abstract

Carefully timed tandem microbubbles have been shown to produce directional and targeted membrane poration of individual cells in microfluidic systems, which could be of use in ultrasound-mediated drug and gene delivery. This study aims at contributing to the understanding of the mechanisms at play in such an interaction. The dynamics of single and tandem microbubbles between two parallel plates is studied numerically and analytically. Comparisons are then made between the numerical results and the available experimental results. Numerically, assuming a potential flow, a three-dimensional boundary element method (BEM) is used to describe complex bubble deformations, jet formation, and bubble splitting. Analytically, compressibility and viscous boundary layer effects along the channel walls, neglected in the BEM model, are considered while shape of the bubble is not considered. Comparisons show that energy losses modify the bubble dynamics when the two approaches use identical initial conditions. The initial conditions in the boundary element method can be adjusted to recover the bubble period and maximum bubble volume when in an infinite medium. Using the same conditions enables the method to recover the full dynamics of single and tandem bubbles, including large deformations and fast re-entering jet formation. This method can be used as a design tool for future tandem-bubble sonoporation experiments.

Keywords: biological fluid dynamics; biomedical flows; bubble dynanics

References

  1. J Acoust Soc Am. 2011 Nov;130(5):3333-8 - PubMed
  2. J Endourol. 2003 Sep;17(7):435-46 - PubMed
  3. Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Jan;81(1 Pt 2):016308 - PubMed
  4. Ultrasound Med Biol. 1987 Aug;13(8):443-70 - PubMed
  5. J Urol. 1997 Dec;158(6):2323-8 - PubMed
  6. J Acoust Soc Am. 2012 Jul;132(1):124-37 - PubMed
  7. J Acoust Soc Am. 2008 Oct;124(4):2374-84 - PubMed
  8. Nat Rev Drug Discov. 2005 Mar;4(3):255-60 - PubMed
  9. J Heart Valve Dis. 1994 Apr;3 Suppl 1:S102-16 - PubMed
  10. J Heart Valve Dis. 1994 May;3(3):318-23 - PubMed
  11. Ultrasound Med Biol. 2011 Dec;37(12):2139-48 - PubMed
  12. J Heart Valve Dis. 1996 Mar;5(2):207-14; discussion 214-5 - PubMed
  13. J Acoust Soc Am. 2011 Nov;130(5):3339-46 - PubMed
  14. J Acoust Soc Am. 2012 Sep;132(3):1346-57 - PubMed
  15. Phys Rev Lett. 2010 Aug 13;105(7):078101 - PubMed
  16. J Acoust Soc Am. 2006 Apr;119(4):2067-72 - PubMed
  17. Ultrasound Med Biol. 2010 Dec;36(12):2065-79 - PubMed
  18. J Acoust Soc Am. 2005 Mar;117(3 Pt 1):1440-7 - PubMed
  19. Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Apr;81(4 Pt 2):046314 - PubMed
  20. Urol Res. 2010 Aug;38(4):321-6 - PubMed

Publication Types

Grant support