Display options
Share it on

Theranostics. 2013 Oct 04;3(10):741-56. doi: 10.7150/thno.6815.

Quantitative statistical methods for image quality assessment.

Theranostics

Joyita Dutta, Sangtae Ahn, Quanzheng Li

Affiliations

  1. 1. Center for Advanced Medical Imaging Sciences, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA;

PMID: 24312148 PMCID: PMC3840409 DOI: 10.7150/thno.6815

Abstract

Quantitative measures of image quality and reliability are critical for both qualitative interpretation and quantitative analysis of medical images. While, in theory, it is possible to analyze reconstructed images by means of Monte Carlo simulations using a large number of noise realizations, the associated computational burden makes this approach impractical. Additionally, this approach is less meaningful in clinical scenarios, where multiple noise realizations are generally unavailable. The practical alternative is to compute closed-form analytical expressions for image quality measures. The objective of this paper is to review statistical analysis techniques that enable us to compute two key metrics: resolution (determined from the local impulse response) and covariance. The underlying methods include fixed-point approaches, which compute these metrics at a fixed point (the unique and stable solution) independent of the iterative algorithm employed, and iteration-based approaches, which yield results that are dependent on the algorithm, initialization, and number of iterations. We also explore extensions of some of these methods to a range of special contexts, including dynamic and motion-compensated image reconstruction. While most of the discussed techniques were developed for emission tomography, the general methods are extensible to other imaging modalities as well. In addition to enabling image characterization, these analysis techniques allow us to control and enhance imaging system performance. We review practical applications where performance improvement is achieved by applying these ideas to the contexts of both hardware (optimizing scanner design) and image reconstruction (designing regularization functions that produce uniform resolution or maximize task-specific figures of merit).

Keywords: image quality metrics; local impulse response; resolution; tomography; variance.

References

  1. Phys Med Biol. 1994 May;39(5):847-71 - PubMed
  2. IEEE Trans Med Imaging. 2008 Jan;27(1):36-46 - PubMed
  3. IEEE Trans Med Imaging. 2008 Mar;27(3):413-24 - PubMed
  4. Med Phys. 1995 Aug;22(8):1273-84 - PubMed
  5. IEEE Trans Med Imaging. 2000 May;19(5):493-506 - PubMed
  6. IEEE Trans Med Imaging. 1996;15(5):687-99 - PubMed
  7. IEEE Trans Med Imaging. 2011 Jan;30(1):119-30 - PubMed
  8. Phys Med Biol. 2006 Aug 21;51(16):4017-29 - PubMed
  9. IEEE Trans Image Process. 1999;8(5):688-99 - PubMed
  10. IEEE Trans Med Imaging. 2003 Sep;22(9):1042-52 - PubMed
  11. IEEE Trans Med Imaging. 2004 Dec;23(12):1543-56 - PubMed
  12. IEEE Trans Image Process. 1996;5(3):493-506 - PubMed
  13. IEEE Trans Med Imaging. 2000 Jun;19(6):601-15 - PubMed
  14. IEEE Trans Med Imaging. 2008 Jun;27(6):775-88 - PubMed
  15. IEEE Trans Med Imaging. 2001 Apr;20(4):280-8 - PubMed
  16. IEEE Trans Med Imaging. 2006 Jan;25(1):28-41 - PubMed
  17. IEEE Trans Med Imaging. 2001 Aug;20(8):815-22 - PubMed
  18. IEEE Trans Med Imaging. 1995;14(1):132-7 - PubMed
  19. IEEE Trans Med Imaging. 2004 Sep;23(9):1057-64 - PubMed
  20. IEEE Trans Med Imaging. 1987;6(1):37-51 - PubMed
  21. J Nucl Med. 1992 Mar;33(3):451-7 - PubMed
  22. IEEE Trans Image Process. 1998;7(1):100-9 - PubMed
  23. IEEE Trans Med Imaging. 2006 May;25(5):640-8 - PubMed
  24. J Opt Soc Am A Opt Image Sci Vis. 2007 Dec;24(12):B99-B109 - PubMed
  25. Phys Med Biol. 1994 May;39(5):833-46 - PubMed
  26. Phys Med Biol. 2003 Nov 7;48(21):3505-19 - PubMed
  27. IEEE Trans Med Imaging. 2009 Apr;28(4):608-20 - PubMed
  28. IEEE Trans Med Imaging. 1993;12(2):215-31 - PubMed
  29. J Comput Assist Tomogr. 1984 Apr;8(2):306-16 - PubMed
  30. IEEE Trans Med Imaging. 2012 Jul;31(7):1413-25 - PubMed
  31. J Opt Soc Am A. 1985 Oct;2(10):1752-9 - PubMed
  32. Phys Med Biol. 1996 Sep;41(9):1777-807 - PubMed
  33. IEEE Trans Med Imaging. 2007 Mar;26(3):335-46 - PubMed
  34. Med Phys. 2004 Dec;31(12):3179-86 - PubMed
  35. Phys Med Biol. 1997 Nov;42(11):2215-32 - PubMed
  36. Phys Med Biol. 2011 Feb 21;56(4):1083-103 - PubMed
  37. IEEE Trans Med Imaging. 2004 Jul;23(7):896-902 - PubMed
  38. IEEE Trans Med Imaging. 2006 Jan;25(1):42-54 - PubMed
  39. IEEE Trans Med Imaging. 2013 Feb;32(2):141-52 - PubMed
  40. J Nucl Med. 1993 Jul;34(7):1198-203 - PubMed
  41. IEEE Trans Med Imaging. 1994;13(4):601-9 - PubMed
  42. IEEE Trans Med Imaging. 2009 May;28(5):645-56 - PubMed
  43. Phys Med Biol. 2009 Sep 7;54(17):5193-208 - PubMed
  44. IEEE Trans Image Process. 1996;5(9):1346-58 - PubMed
  45. IEEE Trans Image Process. 1995;4(10):1417-29 - PubMed
  46. IEEE Trans Image Process. 1996;5(3):480-92 - PubMed
  47. IEEE Trans Med Imaging. 1982;1(2):113-22 - PubMed
  48. IEEE Trans Med Imaging. 1989;8(2):186-93 - PubMed
  49. IEEE Trans Med Imaging. 2004 Mar;23(3):269-84 - PubMed
  50. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):9758-65 - PubMed
  51. IEEE Trans Med Imaging. 2000 Apr;19(4):261-70 - PubMed
  52. IEEE Trans Med Imaging. 1999 Apr;18(4):293-305 - PubMed
  53. IEEE Trans Med Imaging. 1994;13(2):290-300 - PubMed

MeSH terms

Publication Types

Grant support