Display options
Share it on

Plant Mol Biol. 1988 May;11(3):365-77. doi: 10.1007/BF00027393.

Analysis of the T-DNA structure in a large number of transgenic petunias generated by Agrobacterium-mediated transformation.

Plant molecular biology

S C Deroles, R C Gardner

Affiliations

  1. Department of Cellular and Molecular Biology, University of Auckland, Private Bag, Auckland, New Zealand.

PMID: 24272349 DOI: 10.1007/BF00027393

Abstract

Southern hybridisation was performed on ninety-six transgenic petunias that had been selected for resistance to kanamycin. Just over half of the plants contained intact copies of the T-DNA. The most common rearrangements (at least 24 plants out of 96) were simple deleted derivatives that had lost one or both ends of the T-DNA. T-DNAs lacking the left border occurred at a frequency of 20%, and estimates of the frequency of T-DNAs lacking the right border were at least this high. Three plants contained grossly rearranged T-DNAs, of which all expressed the kanamycin resistance gene but only one transmitted the gene to progeny. Two plants lacked T-DNA homology altogether and did not express kanamycin resistance in their leaves or their progeny. Circumstantial evidence suggests that plants containing a chimaeric kanamycin resistance gene driven by the ocs promoter do not root efficiently in the presence of kanamycin. There was no correlation between intactness of the T-DNA and Mendelian inheritance of the kanamycin-resistance phenotype. However, a disproportionate number of plants showing non-Mendelian inheritance had a high copy number of their T-DNA.

References

  1. Science. 1987 Sep 4;237(4819):1176-83 - PubMed
  2. Plant Mol Biol. 1987 Nov;8(6):439-45 - PubMed
  3. Science. 1985 Mar 8;227(4691):1229-31 - PubMed
  4. Plant Mol Biol. 1988 May;11(3):355-64 - PubMed
  5. Cell. 1984 Sep;38(2):455-62 - PubMed
  6. Biotechnology. 1992;24:367-70 - PubMed
  7. Proc Natl Acad Sci U S A. 1987 Sep;84(17):6169-73 - PubMed
  8. Plant Mol Biol. 1986 Jul;7(4):285-99 - PubMed
  9. EMBO J. 1983;2(12):2143-50 - PubMed
  10. Annu Rev Genet. 1986;20:465-99 - PubMed
  11. Plant Mol Biol. 1986 Jul;6(4):221-8 - PubMed
  12. Nucleic Acids Res. 1981 Jul 10;9(13):2989-98 - PubMed
  13. EMBO J. 1986 Jun;5(6):1137-42 - PubMed
  14. J Mol Biol. 1986 Mar 20;188(2):129-45 - PubMed
  15. Proc Natl Acad Sci U S A. 1982 Oct;79(20):6322-6 - PubMed
  16. Cell. 1982 Sep;30(2):589-97 - PubMed
  17. Proc Natl Acad Sci U S A. 1986 Jun;83(11):3895-9 - PubMed
  18. J Mol Biol. 1980 Dec 15;144(3):353-76 - PubMed
  19. EMBO J. 1984 Apr;3(4):835-46 - PubMed
  20. Science. 1987 Jun 5;236(4806):1299-302 - PubMed
  21. Proc Natl Acad Sci U S A. 1983 Aug;80(15):4803-7 - PubMed
  22. Methods Enzymol. 1983;100:243-55 - PubMed
  23. J Mol Appl Genet. 1982;1(4):361-70 - PubMed
  24. Cell. 1980 Mar;19(3):729-39 - PubMed
  25. Cell. 1986 Oct 24;47(2):155-7 - PubMed
  26. J Mol Appl Genet. 1983;2(2):211-24 - PubMed
  27. Mol Gen Genet. 1981;183(2):283-8 - PubMed
  28. Plant Mol Biol. 1986 Jul;7(4):265-84 - PubMed
  29. Science. 1980 Sep 19;209(4463):1385-91 - PubMed
  30. J Bacteriol. 1985 Feb;161(2):655-64 - PubMed
  31. Plant Mol Biol. 1983 Nov;2(6):335-50 - PubMed

Publication Types