Display options
Share it on

Plant Mol Biol. 1988 Sep;11(5):663-72. doi: 10.1007/BF00017466.

Determination of copy number and linkage relationships among five actin gene subfamilies in Petunia hybrida.

Plant molecular biology

M McLean, W V Baird, A G Gerats, R B Meagher

Affiliations

  1. Department of Genetics, University of Georgia, 30602, Athens, GA, USA.

PMID: 24272500 DOI: 10.1007/BF00017466

Abstract

The actin gene superfamily of Petunia hybrida cv. Mitchell contains greater than 100 gene members which have been divided into several highly divergent subfamilies [1]. Five subfamily-specific probes have been used to compare the actin genes among the Mitchell, Violet 23 (V23) and Red 51 (R51) cultivars of P. hybrida. The sum total of actin genes in these five subfamilies was estimated to be between 10 and 34 members in both V23 and R51. Restriction fragment length polymorphisms (RFLPs) between V23 and R51 were examined with these five probes and eleven different restriction endonucleases. Among the 55 comparisons, 87% exhibited RFLPs. These data indicate extreme divergence between V23 and R51 in DNA sequence and/or the presence of small insertions and deletions surrounding these actin gene subfamilies. This divergence suggests that V23 and R51, which have contrasting phenotypic marker loci on every chromosome, may be useful for the development of a complete RFLP linkage map of the Petunia genome. The segregation of Hind III RFLPs among the progeny of two backcrosses demonstrated that representatives of the five subfamilies of Petunia actin genes exist at four distinct genetic locations and suggested that two of these loci are tightly linked. Apparently, amplification of the numerous members of the Petunia actin gene superfamily occurred via gene dispersal of the original subfamily progenitors and not primarily as a result of amplification of a single chromosomal region.

References

  1. Cell. 1981 Apr;24(1):6-7 - PubMed
  2. Nucleic Acids Res. 1980 Mar 11;8(5):1043-59 - PubMed
  3. J Mol Biol. 1983 Jun 15;167(1):77-101 - PubMed
  4. Proc Natl Acad Sci U S A. 1980 Jul;77(7):3912-6 - PubMed
  5. Proc Natl Acad Sci U S A. 1984 Mar;81(6):1813-7 - PubMed
  6. Science. 1986 Apr 4;232(4746):65-8 - PubMed
  7. J Mol Biol. 1983 Mar 5;164(3):355-75 - PubMed
  8. Mol Cell Biol. 1983 Oct;3(10):1783-91 - PubMed
  9. Theor Appl Genet. 1986 Jun;72(3):314-21 - PubMed
  10. EMBO J. 1983;2(5):757-61 - PubMed
  11. J Mol Appl Genet. 1983;2(1):111-26 - PubMed
  12. Anal Biochem. 1983 Jul 1;132(1):6-13 - PubMed
  13. Cell. 1978 Nov;15(3):789-800 - PubMed
  14. EMBO J. 1987 Nov;6(11):3223-31 - PubMed
  15. EMBO J. 1983;2(11):1977-9 - PubMed
  16. Cell. 1980 Feb;19(2):365-78 - PubMed
  17. Proc Natl Acad Sci U S A. 1982 Feb;79(4):1022-6 - PubMed
  18. J Mol Biol. 1982 Sep;160(1):41-57 - PubMed
  19. Mol Cell Biol. 1985 Oct;5(10):2720-32 - PubMed
  20. Mol Cell Biol. 1985 May;5(5):1151-62 - PubMed
  21. Proc Natl Acad Sci U S A. 1986 Jul;83(14):5160-4 - PubMed
  22. Cell. 1984 May;37(1):67-75 - PubMed
  23. EMBO J. 1985 Jan;4(1):1-8 - PubMed
  24. Genetics. 1986 Sep;114(1):315-32 - PubMed
  25. Nature. 1980 Apr 3;284(5755):475-7 - PubMed
  26. Mol Cell Biol. 1981 Jul;1(7):609-28 - PubMed
  27. J Mol Biol. 1982 Jul 25;159(1):1-18 - PubMed
  28. Genetics. 1988 Nov;120(3):809-18 - PubMed
  29. J Mol Biol. 1975 Nov 5;98(3):503-17 - PubMed

Publication Types