Display options
Share it on

Plant Mol Biol. 1988 Nov;11(6):717-29. doi: 10.1007/BF00019513.

A modified storage protein is synthesized, processed, and degraded in the seeds of transgenic plants.

Plant molecular biology

L M Hoffman, D D Donaldson, E M Herman

Affiliations

  1. Agrigenetics Advanced Science Company, 5649 East Buckeye Road, 53716, Madison, WI, USA.

PMID: 24272623 DOI: 10.1007/BF00019513

Abstract

In vitro mutagenesis was used to supplement the sulfur amino acid codon content of a gene encoding β-phaseolin, a Phaseolus vulgaris storage protein. The number of methionine codons in the phaseolin gene was increased from three to nine by insertion of a 45 base pair (bp) synthetic duplex. Either modified or normal phaseolin genes were integrated into the genome of tobacco plants through Agrobacterium tumefaciens-mediated transformation. Although similar levels of phaseolin RNA are detected in seeds of plants transformed with either the normal or modified (himet) gene, the quantity of himet protein is consistently much lower than normal β-phaseolin. Himet phaseolin is expressed in a temporal- and organ-specific fashion, and is N-glycosylated and assembled into trimers in the manner of normal phaseolin. After germination, both types of phaseolin are hydrolyzed, but the himet protein is more quickly degraded. Electron microscopic immunocytochemical observations of developing seeds indicate that the himet protein is primarily localized in the endoplasmic reticulum (ER) and in Golgi apparatus secretion vesicles. Himet phaseolin is absent from protein storage vacuoles, termed protein bodies, where normal phaseolin is deposited in transgenic tobacco. We interpret the immunocytochemical data to indicate that himet phasolin is transported through the ER and Golgi apparatus and is then degraded in Golgi secretion vesicles or the protein bodies.

References

  1. J Cell Biol. 1983 Apr;96(4):999-1007 - PubMed
  2. Adv Enzymol Relat Areas Mol Biol. 1978;47:45-148 - PubMed
  3. J Biol Chem. 1986 May 15;261(14):6279-84 - PubMed
  4. Nature. 1970 Aug 15;227(5259):680-5 - PubMed
  5. Planta. 1979 Sep;146(4):487-501 - PubMed
  6. Proc Natl Acad Sci U S A. 1985 May;82(10):3320-4 - PubMed
  7. J Biol Chem. 1983 Apr 25;258(8):5027-33 - PubMed
  8. EMBO J. 1987 Nov;6(11):3213-21 - PubMed
  9. Cell. 1986 Sep 12;46(6):939-50 - PubMed
  10. J Biol Chem. 1987 Oct 5;262(28):13392-403 - PubMed
  11. Plant Physiol. 1985 Sep;79(1):65-71 - PubMed
  12. Virology. 1969 Nov;39(3):439-48 - PubMed
  13. Anal Biochem. 1981 Apr;112(2):195-203 - PubMed
  14. Planta. 1983 Jun;158(2):140-51 - PubMed
  15. Plant Mol Biol. 1981 Mar;1(1):19-34 - PubMed
  16. Nucleic Acids Res. 1985 Sep 25;13(18):6483-98 - PubMed
  17. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7347-51 - PubMed
  18. Nucleic Acids Res. 1984 Sep 25;12(18):7035-56 - PubMed
  19. J Biol Chem. 1981 Mar 25;256(6):2597-600 - PubMed
  20. Proc Natl Acad Sci U S A. 1983 Aug;80(15):4803-7 - PubMed
  21. Planta. 1980 Dec;150(5):419-25 - PubMed
  22. Proc Natl Acad Sci U S A. 1980 Jan;77(1):428-32 - PubMed
  23. Plant Physiol. 1978 Jun;61(6):918-23 - PubMed
  24. Plant Physiol. 1985 Apr;77(4):886-90 - PubMed
  25. Science. 1983 Nov 4;222(4623):476-82 - PubMed
  26. Plant Physiol. 1982 Jun;69(6):1414-7 - PubMed
  27. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350-4 - PubMed
  28. Planta. 1978 Jan;142(3):291-8 - PubMed

Publication Types