Display options
Share it on

Evodevo. 2013 Dec 02;4(1):33. doi: 10.1186/2041-9139-4-33.

Myogenesis in the sea urchin embryo: the molecular fingerprint of the myoblast precursors.

EvoDevo

Carmen Andrikou, Edmondo Iovene, Francesca Rizzo, Paola Oliveri, Maria Ina Arnone

Affiliations

  1. Cellular and Developmental Biology, Stazione Zoologica Anton Dohrn, Napoli 80121, Italy. [email protected].

PMID: 24295205 PMCID: PMC4175510 DOI: 10.1186/2041-9139-4-33

Abstract

BACKGROUND: In sea urchin larvae the circumesophageal fibers form a prominent muscle system of mesodermal origin. Although the morphology and later development of this muscle system has been well-described, little is known about the molecular signature of these cells or their precise origin in the early embryo. As an invertebrate deuterostome that is more closely related to the vertebrates than other commonly used model systems in myogenesis, the sea urchin fills an important phylogenetic gap and provides a unique perspective on the evolution of muscle cell development.

RESULTS: Here, we present a comprehensive description of the development of the sea urchin larval circumesophageal muscle lineage beginning with its mesodermal origin using high-resolution localization of the expression of several myogenic transcriptional regulators and differentiation genes. A few myoblasts are bilaterally distributed at the oral vegetal side of the tip of the archenteron and first appear at the late gastrula stage. The expression of the differentiation genes Myosin Heavy Chain, Tropomyosin I and II, as well as the regulatory genes MyoD2, FoxF, FoxC, FoxL1, Myocardin, Twist, and Tbx6 uniquely identify these cells. Interestingly, evolutionarily conserved myogenic factors such as Mef2, MyoR and Six1/2 are not expressed in sea urchin myoblasts but are found in other mesodermal domains of the tip of the archenteron. The regulatory states of these domains were characterized in detail. Moreover, using a combinatorial analysis of gene expression we followed the development of the FoxF/FoxC positive cells from the onset of expression to the end of gastrulation. Our data allowed us to build a complete map of the Non-Skeletogenic Mesoderm at the very early gastrula stage, in which specific molecular signatures identify the precursors of different cell types. Among them, a small group of cells within the FoxY domain, which also express FoxC and SoxE, have been identified as plausible myoblast precursors. Together, these data support a very early gastrula stage segregation of the myogenic lineage.

CONCLUSIONS: From this analysis, we are able to precisely define the regulatory and differentiation signatures of the circumesophageal muscle in the sea urchin embryo. Our findings have important implications in understanding the evolution of development of the muscle cell lineage at the molecular level. The data presented here suggest a high level of conservation of the myogenic specification mechanisms across wide phylogenetic distances, but also reveal clear cases of gene cooption.

References

  1. Development. 1996 Jan;122(1):253-63 - PubMed
  2. Gene. 2002 Apr 3;287(1-2):11-22 - PubMed
  3. Biochem Biophys Res Commun. 2012 Jun 1;422(2):285-90 - PubMed
  4. J Cell Sci. 2010 Jul 15;123(Pt 14):2453-63 - PubMed
  5. Development. 2003 Apr;130(8):1681-90 - PubMed
  6. Annu Rev Cell Dev Biol. 2002;18:747-83 - PubMed
  7. Biol Rev Camb Philos Soc. 1967 Aug;42(3):442-98 - PubMed
  8. Curr Opin Genet Dev. 2006 Oct;16(5):525-32 - PubMed
  9. J Cell Physiol. 2000 Nov;185(2):155-73 - PubMed
  10. Development. 2006 Mar;133(5):833-43 - PubMed
  11. Dev Biol. 2010 Jan 15;337(2):220-32 - PubMed
  12. Trends Genet. 1991 Jul;7(7):212-8 - PubMed
  13. Evol Dev. 2013 Jan;15(1):5-17 - PubMed
  14. Curr Opin Cell Biol. 2009 Dec;21(6):754-60 - PubMed
  15. Dev Biol. 2013 Oct 1;382(1):280-92 - PubMed
  16. Genome Biol. 2007;8(5):R85 - PubMed
  17. J Biochem. 2007 Jun;141(6):775-81 - PubMed
  18. Development. 2010 Sep;137(18):3107-17 - PubMed
  19. Genes Dev. 2006 Jun 15;20(12):1545-56 - PubMed
  20. Proc Natl Acad Sci U S A. 1999 Jan 19;96(2):552-7 - PubMed
  21. Methods Mol Biol. 2000;132:365-86 - PubMed
  22. Dev Biol. 2002 Jun 1;246(1):132-47 - PubMed
  23. Dev Biol. 2008 Jul 15;319(2):406-15 - PubMed
  24. Science. 1992 Apr 10;256(5054):240-3 - PubMed
  25. Genomics. 1999 Jul 15;59(2):122-33 - PubMed
  26. Dev Genes Evol. 2006 May;216(5):285-9 - PubMed
  27. Development. 2006 Nov;133(21):4245-56 - PubMed
  28. Development. 2002 Apr;129(8):1945-55 - PubMed
  29. Dev Biol. 1984 Oct;105(2):365-76 - PubMed
  30. Circ Res. 2002 Jun 28;90(12):1299-306 - PubMed
  31. Dev Biol. 2000 Dec 15;228(2):270-86 - PubMed
  32. Dev Biol. 2013 Mar 1;375(1):92-104 - PubMed
  33. Cell Tissue Res. 1988 May;252(2):411-7 - PubMed
  34. Dev Biol. 1990 Aug;140(2):447-54 - PubMed
  35. Dev Biol. 2006 Dec 1;300(1):219-37 - PubMed
  36. Dev Biol. 2006 Dec 1;300(1):49-62 - PubMed
  37. J Biol Chem. 2003 Aug 8;278(32):29769-75 - PubMed
  38. PLoS Biol. 2012;10(10):e1001402 - PubMed
  39. Dev Biol. 2010 Oct 15;346(2):170-80 - PubMed
  40. Genomics. 2010 May;95(5):256-60 - PubMed
  41. Dev Biol. 2012 Apr 15;364(2):259-67 - PubMed
  42. Development. 1999 Apr;126(8):1703-13 - PubMed
  43. Development. 2007 Sep;134(18):3297-305 - PubMed
  44. Gene Expr Patterns. 2009 Jun;9(5):324-8 - PubMed
  45. Gene Expr Patterns. 2006 Apr;6(4):383-93 - PubMed
  46. Dev Dyn. 2007 Sep;236(9):2397-409 - PubMed
  47. Dev Biol. 1986 Feb;113(2):522-6 - PubMed
  48. Dev Dyn. 2008 Dec;237(12):3749-61 - PubMed
  49. Mol Reprod Dev. 2012 Oct;79(10):680-8 - PubMed
  50. Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):6219-23 - PubMed
  51. Cold Spring Harb Perspect Biol. 2012 Feb 01;4(2): - PubMed
  52. Nature. 2001 Feb 8;409(6821):724-9 - PubMed
  53. Development. 2009 Feb;136(4):541-9 - PubMed
  54. Nature. 2009 Nov 5;462(7269):65-70 - PubMed
  55. Dev Biol. 2007 Feb 1;302(1):333-44 - PubMed
  56. Science. 1996 Jun 7;272(5267):1481-4 - PubMed
  57. Genome Res. 2003 Dec;13(12):2736-46 - PubMed
  58. Gene Expr Patterns. 2004 Jul;4(4):449-56 - PubMed
  59. Dev Biol. 1991 Jun;145(2):255-65 - PubMed
  60. J Exp Zool. 1992 Apr 15;262(1):51-60 - PubMed
  61. Development. 2007 Dec;134(23):4131-40 - PubMed
  62. Nature. 2012 Jul 12;487(7406):231-4 - PubMed
  63. Dev Biol. 2006 Dec 1;300(1):90-107 - PubMed
  64. Curr Biol. 2006 May 9;16(9):R314-6 - PubMed
  65. Nat Rev Genet. 2009 Apr;10(4):233-40 - PubMed
  66. Mech Dev. 1993 Apr;41(1):3-14 - PubMed
  67. Development. 2007 Jan;134(1):19-29 - PubMed
  68. Proc Natl Acad Sci U S A. 2008 Apr 22;105(16):5955-62 - PubMed
  69. Development. 1994 May;120(5):1251-63 - PubMed
  70. Mech Dev. 1999 Aug;86(1-2):209-12 - PubMed
  71. Mol Mar Biol Biotechnol. 1995 Jun;4(2):148-53 - PubMed
  72. Dev Biol. 2006 Dec 1;300(1):406-15 - PubMed
  73. Science. 2007 Mar 16;315(5818):1510-1 - PubMed
  74. Development. 2013 Apr;140(8):1796-806 - PubMed
  75. Dev Biol. 2009 Jul 1;331(1):26-37 - PubMed
  76. Gene Expr Patterns. 2010 Jun;10(4-5):177-84 - PubMed
  77. Cell Mol Life Sci. 2009 Feb;66(4):565-83 - PubMed
  78. Proc Natl Acad Sci U S A. 1989 Jul;86(14):5434-8 - PubMed
  79. Exp Cell Res. 2003 Sep 10;289(1):162-73 - PubMed
  80. Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11522-6 - PubMed
  81. Int J Dev Biol. 2012;56(6-8):519-34 - PubMed
  82. Evodevo. 2013 Jun 18;4(1):17 - PubMed
  83. Dev Biol. 2006 Dec 1;300(1):35-48 - PubMed

Publication Types