Display options
Share it on

Plasmonics. 2013;8:1643-1646. doi: 10.1007/s11468-013-9582-2. Epub 2013 Jun 04.

Effects of Carrier Confinement and Intervalley Scattering on Photoexcited Electron Plasma in Silicon.

Plasmonics (Norwell, Mass.)

A Sieradzki, Z T Kuznicki

Affiliations

  1. Institute of Physics, Wroc?aw University of Technology, Wybrze?e Wyspia?skiego 27, 50-370 Wroc?aw, Poland ; Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, CNRS, Université de Strasbourg, BP 43, 23 rue du Loess, 67034 Strasbourg, France.

PMID: 24273470 PMCID: PMC3827834 DOI: 10.1007/s11468-013-9582-2

Abstract

The ultrafast reflectivity of silicon, excited and probed with femtosecond laser pulses, is studied for different wavelengths and energy densities. The confinement of carriers in a thin surface layer delimited by a nanoscale Si-layered system buried in a Si heavily-doped wafer reduces the critical density of carriers necessary to create the electron plasma by a factor of ten. We performed two types of reflectivity measurements, using either a single beam or two beams. The plasma strongly depends on the photon energy density because of the intervalley scattering of the electrons revealed by two different mechanisms assisted by the electron-phonon interaction. One mechanism leads to a negative differential reflectivity that can be attributed to an induced absorption in X valleys. The other mechanism occurs, when the carrier population is thermalizing and gives rise to a positive differential reflectivity corresponding to Pauli-blocked intervalley gamma to X scattering. These results are important for improving the efficiency of Si light-to-electricity converters, in which there is a possibility of multiplying carriers by nanostructurization of Si.

Keywords: Electron–hole plasma; Nanostructured silicon; Ultrafast processes

References

  1. Phys Rev Lett. 2006 Sep 8;97(10):107601 - PubMed
  2. Phys Rev Lett. 1996 Oct 7;77(15):3149-3152 - PubMed
  3. Phys Rev B Condens Matter. 1991 Mar 15;43(9):7136-7144 - PubMed
  4. Phys Rev Lett. 1989 Jan 9;62(2):155-158 - PubMed
  5. Phys Rev B Condens Matter. 1987 May 15;35(15):7986-7992 - PubMed
  6. Phys Rev B Condens Matter. 1990 Oct 15;42(11):7163-7173 - PubMed
  7. Phys Rev Lett. 1985 Feb 18;54(7):722-724 - PubMed
  8. Nature. 2001 May 31;411(6837):549-57 - PubMed
  9. Phys Rev Lett. 1990 Dec 31;65(27):3429-3432 - PubMed
  10. Nat Mater. 2002 Dec;1(4):217-24 - PubMed
  11. Phys Rev B Condens Matter. 1995 Nov 15;52(20):14607-14614 - PubMed
  12. Nature. 2001 Nov 15;414(6861):286-9 - PubMed
  13. Phys Rev B Condens Matter. 1987 May 15;35(15):8166-8176 - PubMed
  14. Phys Rev B Condens Matter. 1990 Feb 15;41(6):3638-3640 - PubMed
  15. Phys Rev Lett. 1994 Feb 28;72(9):1364-1367 - PubMed

Publication Types